TPTP Problem File: GRP400-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP400-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Group Theory (Cancellative Semigroups)
% Problem : Prove associativity implies distribution in cancellative semigroup
% Version : [EF+02] axioms.
% English : Assume a cancellative semigroup admits a commutator operation.
% Then the following three properties are equivalent:
% (1) commutator is associative;
% (2) commutator distributes over product;
% (3) the semigroup is nilpotent of class 2.
% This is a generalization of the corresponding theorem for group
% theory. The problem here is to prove (1) implies (2).
% Refs : [Kur56] Kurosh (1956), The Theory of Groups
% : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : cs-comm-ad [EF+02]
% Status : Unsatisfiable
% Rating : 0.80 v8.2.0, 0.75 v8.1.0, 0.79 v7.5.0, 0.82 v7.4.0, 0.76 v7.3.0, 0.77 v7.2.0, 0.75 v7.1.0, 0.73 v7.0.0, 0.85 v6.4.0, 0.86 v6.3.0, 0.80 v6.2.0, 0.70 v6.1.0, 0.73 v6.0.0, 0.71 v5.5.0, 0.75 v5.4.0, 0.89 v5.3.0, 0.80 v5.2.0, 0.88 v5.1.0, 1.00 v4.0.0, 0.86 v3.7.0, 0.71 v3.4.0, 0.67 v3.3.0, 0.56 v3.2.0, 0.67 v3.1.0, 0.80 v2.7.0, 1.00 v2.5.0
% Syntax : Number of clauses : 6 ( 4 unt; 0 nHn; 3 RR)
% Number of literals : 8 ( 8 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include Cancellative semigroups axioms
include('Axioms/GRP008-0.ax').
include('Axioms/GRP008-1.ax').
%--------------------------------------------------------------------------
%----CS admits commutator
cnf(commutator,axiom,
multiply(A,B) = multiply(B,multiply(A,commutator(A,B))) ).
%----Commutator is associative
cnf(associativity_of_commutator,axiom,
commutator(commutator(A,B),C) = commutator(A,commutator(B,C)) ).
%----Denial: commutator distributes over product
cnf(prove_commutator_distributes_over_product,negated_conjecture,
commutator(multiply(a,b),c) != multiply(commutator(a,c),commutator(b,c)) ).
%--------------------------------------------------------------------------