TPTP Problem File: GRP364-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP364-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Group Theory
% Problem : An identity generated by HR, number 27037
% Version : [MOW76] (equality) axioms.
% English :
% Refs : [CS02] Colton & Sutcliffe (2002), Automatic Generation of Ben
% : [Col01] Colton (2001), Email to G. Sutcliffe
% : [CBW99] Colton et al. (1999), Automatic Concept Formation in P
% Source : [Col01]
% Names :
% Status : Unsatisfiable
% Rating : 0.40 v8.2.0, 0.38 v8.1.0, 0.32 v7.5.0, 0.35 v7.4.0, 0.29 v7.3.0, 0.38 v7.2.0, 0.33 v7.1.0, 0.36 v7.0.0, 0.31 v6.4.0, 0.36 v6.3.0, 0.30 v6.2.0, 0.40 v6.1.0, 0.45 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.44 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.33 v5.0.0, 0.50 v4.1.0, 0.56 v4.0.1, 0.50 v4.0.0, 0.43 v3.7.0, 0.29 v3.4.0, 0.33 v3.3.0, 0.22 v3.2.0, 0.33 v3.1.0, 0.00 v2.7.0, 0.50 v2.6.0, 0.60 v2.5.0
% Syntax : Number of clauses : 40 ( 3 unt; 36 nHn; 37 RR)
% Number of literals : 87 ( 87 equ; 12 neg)
% Maximal clause size : 12 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 10 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_this_1,negated_conjecture,
( multiply(sk_c7,sk_c9) = sk_c8
| multiply(sk_c9,sk_c8) = sk_c7 ) ).
cnf(prove_this_2,negated_conjecture,
( multiply(sk_c7,sk_c9) = sk_c8
| multiply(sk_c4,sk_c9) = sk_c8 ) ).
cnf(prove_this_3,negated_conjecture,
( multiply(sk_c7,sk_c9) = sk_c8
| inverse(sk_c4) = sk_c9 ) ).
cnf(prove_this_4,negated_conjecture,
( multiply(sk_c7,sk_c9) = sk_c8
| multiply(sk_c9,sk_c6) = sk_c8 ) ).
cnf(prove_this_5,negated_conjecture,
( multiply(sk_c7,sk_c9) = sk_c8
| multiply(sk_c5,sk_c9) = sk_c6 ) ).
cnf(prove_this_6,negated_conjecture,
( multiply(sk_c7,sk_c9) = sk_c8
| inverse(sk_c5) = sk_c9 ) ).
cnf(prove_this_7,negated_conjecture,
( multiply(sk_c9,sk_c2) = sk_c8
| multiply(sk_c9,sk_c8) = sk_c7 ) ).
cnf(prove_this_8,negated_conjecture,
( multiply(sk_c9,sk_c2) = sk_c8
| multiply(sk_c4,sk_c9) = sk_c8 ) ).
cnf(prove_this_9,negated_conjecture,
( multiply(sk_c9,sk_c2) = sk_c8
| inverse(sk_c4) = sk_c9 ) ).
cnf(prove_this_10,negated_conjecture,
( multiply(sk_c9,sk_c2) = sk_c8
| multiply(sk_c9,sk_c6) = sk_c8 ) ).
cnf(prove_this_11,negated_conjecture,
( multiply(sk_c9,sk_c2) = sk_c8
| multiply(sk_c5,sk_c9) = sk_c6 ) ).
cnf(prove_this_12,negated_conjecture,
( multiply(sk_c9,sk_c2) = sk_c8
| inverse(sk_c5) = sk_c9 ) ).
cnf(prove_this_13,negated_conjecture,
( multiply(sk_c1,sk_c9) = sk_c2
| multiply(sk_c9,sk_c8) = sk_c7 ) ).
cnf(prove_this_14,negated_conjecture,
( multiply(sk_c1,sk_c9) = sk_c2
| multiply(sk_c4,sk_c9) = sk_c8 ) ).
cnf(prove_this_15,negated_conjecture,
( multiply(sk_c1,sk_c9) = sk_c2
| inverse(sk_c4) = sk_c9 ) ).
cnf(prove_this_16,negated_conjecture,
( multiply(sk_c1,sk_c9) = sk_c2
| multiply(sk_c9,sk_c6) = sk_c8 ) ).
cnf(prove_this_17,negated_conjecture,
( multiply(sk_c1,sk_c9) = sk_c2
| multiply(sk_c5,sk_c9) = sk_c6 ) ).
cnf(prove_this_18,negated_conjecture,
( multiply(sk_c1,sk_c9) = sk_c2
| inverse(sk_c5) = sk_c9 ) ).
cnf(prove_this_19,negated_conjecture,
( inverse(sk_c1) = sk_c9
| multiply(sk_c9,sk_c8) = sk_c7 ) ).
cnf(prove_this_20,negated_conjecture,
( inverse(sk_c1) = sk_c9
| multiply(sk_c4,sk_c9) = sk_c8 ) ).
cnf(prove_this_21,negated_conjecture,
( inverse(sk_c1) = sk_c9
| inverse(sk_c4) = sk_c9 ) ).
cnf(prove_this_22,negated_conjecture,
( inverse(sk_c1) = sk_c9
| multiply(sk_c9,sk_c6) = sk_c8 ) ).
cnf(prove_this_23,negated_conjecture,
( inverse(sk_c1) = sk_c9
| multiply(sk_c5,sk_c9) = sk_c6 ) ).
cnf(prove_this_24,negated_conjecture,
( inverse(sk_c1) = sk_c9
| inverse(sk_c5) = sk_c9 ) ).
cnf(prove_this_25,negated_conjecture,
( multiply(sk_c3,sk_c7) = sk_c9
| multiply(sk_c9,sk_c8) = sk_c7 ) ).
cnf(prove_this_26,negated_conjecture,
( multiply(sk_c3,sk_c7) = sk_c9
| multiply(sk_c4,sk_c9) = sk_c8 ) ).
cnf(prove_this_27,negated_conjecture,
( multiply(sk_c3,sk_c7) = sk_c9
| inverse(sk_c4) = sk_c9 ) ).
cnf(prove_this_28,negated_conjecture,
( multiply(sk_c3,sk_c7) = sk_c9
| multiply(sk_c9,sk_c6) = sk_c8 ) ).
cnf(prove_this_29,negated_conjecture,
( multiply(sk_c3,sk_c7) = sk_c9
| multiply(sk_c5,sk_c9) = sk_c6 ) ).
cnf(prove_this_30,negated_conjecture,
( multiply(sk_c3,sk_c7) = sk_c9
| inverse(sk_c5) = sk_c9 ) ).
cnf(prove_this_31,negated_conjecture,
( inverse(sk_c3) = sk_c7
| multiply(sk_c9,sk_c8) = sk_c7 ) ).
cnf(prove_this_32,negated_conjecture,
( inverse(sk_c3) = sk_c7
| multiply(sk_c4,sk_c9) = sk_c8 ) ).
cnf(prove_this_33,negated_conjecture,
( inverse(sk_c3) = sk_c7
| inverse(sk_c4) = sk_c9 ) ).
cnf(prove_this_34,negated_conjecture,
( inverse(sk_c3) = sk_c7
| multiply(sk_c9,sk_c6) = sk_c8 ) ).
cnf(prove_this_35,negated_conjecture,
( inverse(sk_c3) = sk_c7
| multiply(sk_c5,sk_c9) = sk_c6 ) ).
cnf(prove_this_36,negated_conjecture,
( inverse(sk_c3) = sk_c7
| inverse(sk_c5) = sk_c9 ) ).
cnf(prove_this_37,negated_conjecture,
( multiply(sk_c7,sk_c9) != sk_c8
| multiply(sk_c9,X4) != sk_c8
| multiply(X5,sk_c9) != X4
| inverse(X5) != sk_c9
| multiply(X6,sk_c7) != sk_c9
| inverse(X6) != sk_c7
| multiply(sk_c9,sk_c8) != sk_c7
| multiply(X1,sk_c9) != sk_c8
| inverse(X1) != sk_c9
| multiply(sk_c9,X2) != sk_c8
| multiply(X3,sk_c9) != X2
| inverse(X3) != sk_c9 ) ).
%--------------------------------------------------------------------------