TPTP Problem File: GRP242-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP242-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Group Theory
% Problem : An identity generated by HR, number 00702
% Version : [MOW76] (equality) axioms.
% English :
% Refs : [CS02] Colton & Sutcliffe (2002), Automatic Generation of Ben
% : [Col01] Colton (2001), Email to G. Sutcliffe
% : [CBW99] Colton et al. (1999), Automatic Concept Formation in P
% Source : [Col01]
% Names :
% Status : Unsatisfiable
% Rating : 0.33 v9.0.0, 0.27 v8.2.0, 0.31 v8.1.0, 0.26 v7.5.0, 0.35 v7.4.0, 0.29 v7.3.0, 0.38 v7.2.0, 0.33 v7.1.0, 0.27 v7.0.0, 0.15 v6.4.0, 0.29 v6.3.0, 0.20 v6.2.0, 0.40 v6.1.0, 0.45 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.67 v5.3.0, 0.70 v5.2.0, 0.50 v5.1.0, 0.56 v5.0.0, 0.50 v4.1.0, 0.67 v4.0.1, 0.62 v4.0.0, 0.57 v3.7.0, 0.43 v3.4.0, 0.33 v3.3.0, 0.44 v3.1.0, 0.00 v2.7.0, 0.38 v2.6.0, 0.40 v2.5.0
% Syntax : Number of clauses : 64 ( 3 unt; 60 nHn; 61 RR)
% Number of literals : 139 ( 139 equ; 16 neg)
% Maximal clause size : 16 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 14 ( 14 usr; 12 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_this_1,negated_conjecture,
( multiply(sk_c1,sk_c11) = sk_c10
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_2,negated_conjecture,
( multiply(sk_c1,sk_c11) = sk_c10
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_3,negated_conjecture,
( multiply(sk_c1,sk_c11) = sk_c10
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_4,negated_conjecture,
( multiply(sk_c1,sk_c11) = sk_c10
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_5,negated_conjecture,
( multiply(sk_c1,sk_c11) = sk_c10
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_6,negated_conjecture,
( multiply(sk_c1,sk_c11) = sk_c10
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_7,negated_conjecture,
( inverse(sk_c1) = sk_c11
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_8,negated_conjecture,
( inverse(sk_c1) = sk_c11
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_9,negated_conjecture,
( inverse(sk_c1) = sk_c11
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_10,negated_conjecture,
( inverse(sk_c1) = sk_c11
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_11,negated_conjecture,
( inverse(sk_c1) = sk_c11
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_12,negated_conjecture,
( inverse(sk_c1) = sk_c11
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_13,negated_conjecture,
( multiply(sk_c2,sk_c10) = sk_c9
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_14,negated_conjecture,
( multiply(sk_c2,sk_c10) = sk_c9
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_15,negated_conjecture,
( multiply(sk_c2,sk_c10) = sk_c9
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_16,negated_conjecture,
( multiply(sk_c2,sk_c10) = sk_c9
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_17,negated_conjecture,
( multiply(sk_c2,sk_c10) = sk_c9
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_18,negated_conjecture,
( multiply(sk_c2,sk_c10) = sk_c9
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_19,negated_conjecture,
( inverse(sk_c2) = sk_c10
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_20,negated_conjecture,
( inverse(sk_c2) = sk_c10
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_21,negated_conjecture,
( inverse(sk_c2) = sk_c10
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_22,negated_conjecture,
( inverse(sk_c2) = sk_c10
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_23,negated_conjecture,
( inverse(sk_c2) = sk_c10
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_24,negated_conjecture,
( inverse(sk_c2) = sk_c10
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_25,negated_conjecture,
( multiply(sk_c3,sk_c6) = sk_c11
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_26,negated_conjecture,
( multiply(sk_c3,sk_c6) = sk_c11
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_27,negated_conjecture,
( multiply(sk_c3,sk_c6) = sk_c11
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_28,negated_conjecture,
( multiply(sk_c3,sk_c6) = sk_c11
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_29,negated_conjecture,
( multiply(sk_c3,sk_c6) = sk_c11
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_30,negated_conjecture,
( multiply(sk_c3,sk_c6) = sk_c11
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_31,negated_conjecture,
( inverse(sk_c3) = sk_c6
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_32,negated_conjecture,
( inverse(sk_c3) = sk_c6
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_33,negated_conjecture,
( inverse(sk_c3) = sk_c6
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_34,negated_conjecture,
( inverse(sk_c3) = sk_c6
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_35,negated_conjecture,
( inverse(sk_c3) = sk_c6
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_36,negated_conjecture,
( inverse(sk_c3) = sk_c6
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_37,negated_conjecture,
( multiply(sk_c6,sk_c10) = sk_c11
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_38,negated_conjecture,
( multiply(sk_c6,sk_c10) = sk_c11
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_39,negated_conjecture,
( multiply(sk_c6,sk_c10) = sk_c11
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_40,negated_conjecture,
( multiply(sk_c6,sk_c10) = sk_c11
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_41,negated_conjecture,
( multiply(sk_c6,sk_c10) = sk_c11
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_42,negated_conjecture,
( multiply(sk_c6,sk_c10) = sk_c11
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_43,negated_conjecture,
( inverse(sk_c5) = sk_c4
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_44,negated_conjecture,
( inverse(sk_c5) = sk_c4
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_45,negated_conjecture,
( inverse(sk_c5) = sk_c4
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_46,negated_conjecture,
( inverse(sk_c5) = sk_c4
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_47,negated_conjecture,
( inverse(sk_c5) = sk_c4
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_48,negated_conjecture,
( inverse(sk_c5) = sk_c4
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_49,negated_conjecture,
( inverse(sk_c4) = sk_c6
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_50,negated_conjecture,
( inverse(sk_c4) = sk_c6
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_51,negated_conjecture,
( inverse(sk_c4) = sk_c6
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_52,negated_conjecture,
( inverse(sk_c4) = sk_c6
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_53,negated_conjecture,
( inverse(sk_c4) = sk_c6
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_54,negated_conjecture,
( inverse(sk_c4) = sk_c6
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_55,negated_conjecture,
( multiply(sk_c5,sk_c6) = sk_c4
| multiply(sk_c10,sk_c9) = sk_c11 ) ).
cnf(prove_this_56,negated_conjecture,
( multiply(sk_c5,sk_c6) = sk_c4
| inverse(sk_c10) = sk_c9 ) ).
cnf(prove_this_57,negated_conjecture,
( multiply(sk_c5,sk_c6) = sk_c4
| multiply(sk_c7,sk_c10) = sk_c11 ) ).
cnf(prove_this_58,negated_conjecture,
( multiply(sk_c5,sk_c6) = sk_c4
| inverse(sk_c7) = sk_c10 ) ).
cnf(prove_this_59,negated_conjecture,
( multiply(sk_c5,sk_c6) = sk_c4
| multiply(sk_c8,sk_c11) = sk_c9 ) ).
cnf(prove_this_60,negated_conjecture,
( multiply(sk_c5,sk_c6) = sk_c4
| inverse(sk_c8) = sk_c11 ) ).
cnf(prove_this_61,negated_conjecture,
( multiply(X3,sk_c11) != sk_c10
| inverse(X3) != sk_c11
| multiply(X4,sk_c10) != sk_c9
| inverse(X4) != sk_c10
| multiply(X5,X6) != sk_c11
| inverse(X5) != X6
| multiply(X6,sk_c10) != sk_c11
| inverse(X7) != X8
| inverse(X8) != X6
| multiply(X7,X6) != X8
| multiply(sk_c10,sk_c9) != sk_c11
| inverse(sk_c10) != sk_c9
| multiply(X1,sk_c10) != sk_c11
| inverse(X1) != sk_c10
| multiply(X2,sk_c11) != sk_c9
| inverse(X2) != sk_c11 ) ).
%--------------------------------------------------------------------------