TPTP Problem File: GRP214-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP214-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Group Theory
% Problem : An identity generated by HR, number 00387
% Version : [MOW76] (equality) axioms.
% English :
% Refs : [CS02] Colton & Sutcliffe (2002), Automatic Generation of Ben
% : [Col01] Colton (2001), Email to G. Sutcliffe
% : [CBW99] Colton et al. (1999), Automatic Concept Formation in P
% Source : [Col01]
% Names :
% Status : Unsatisfiable
% Rating : 0.13 v8.2.0, 0.12 v8.1.0, 0.16 v7.5.0, 0.24 v7.3.0, 0.23 v7.2.0, 0.17 v7.1.0, 0.09 v7.0.0, 0.15 v6.4.0, 0.21 v6.3.0, 0.20 v6.2.0, 0.40 v6.1.0, 0.45 v6.0.0, 0.29 v5.5.0, 0.50 v5.4.0, 0.56 v5.3.0, 0.60 v5.2.0, 0.38 v5.1.0, 0.44 v5.0.0, 0.40 v4.1.0, 0.56 v4.0.1, 0.62 v4.0.0, 0.43 v3.7.0, 0.29 v3.4.0, 0.17 v3.3.0, 0.33 v3.1.0, 0.00 v2.7.0, 0.25 v2.6.0, 0.40 v2.5.0
% Syntax : Number of clauses : 16 ( 3 unt; 12 nHn; 13 RR)
% Number of literals : 34 ( 34 equ; 7 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 8 con; 0-2 aty)
% Number of variables : 10 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_this_1,negated_conjecture,
( multiply(sk_c1,sk_c7) = sk_c6
| multiply(sk_c3,sk_c7) = sk_c5 ) ).
cnf(prove_this_2,negated_conjecture,
( multiply(sk_c1,sk_c7) = sk_c6
| inverse(sk_c3) = sk_c7 ) ).
cnf(prove_this_3,negated_conjecture,
( multiply(sk_c1,sk_c7) = sk_c6
| multiply(sk_c4,sk_c5) = sk_c6 ) ).
cnf(prove_this_4,negated_conjecture,
( multiply(sk_c1,sk_c7) = sk_c6
| inverse(sk_c4) = sk_c5 ) ).
cnf(prove_this_5,negated_conjecture,
( inverse(sk_c1) = sk_c7
| multiply(sk_c3,sk_c7) = sk_c5 ) ).
cnf(prove_this_6,negated_conjecture,
( inverse(sk_c1) = sk_c7
| inverse(sk_c3) = sk_c7 ) ).
cnf(prove_this_7,negated_conjecture,
( inverse(sk_c1) = sk_c7
| multiply(sk_c4,sk_c5) = sk_c6 ) ).
cnf(prove_this_8,negated_conjecture,
( inverse(sk_c1) = sk_c7
| inverse(sk_c4) = sk_c5 ) ).
cnf(prove_this_9,negated_conjecture,
( multiply(sk_c7,sk_c2) = sk_c6
| multiply(sk_c3,sk_c7) = sk_c5 ) ).
cnf(prove_this_10,negated_conjecture,
( multiply(sk_c7,sk_c2) = sk_c6
| inverse(sk_c3) = sk_c7 ) ).
cnf(prove_this_11,negated_conjecture,
( multiply(sk_c7,sk_c2) = sk_c6
| multiply(sk_c4,sk_c5) = sk_c6 ) ).
cnf(prove_this_12,negated_conjecture,
( multiply(sk_c7,sk_c2) = sk_c6
| inverse(sk_c4) = sk_c5 ) ).
cnf(prove_this_13,negated_conjecture,
( multiply(X3,sk_c7) != sk_c6
| inverse(X3) != sk_c7
| multiply(sk_c7,X4) != sk_c6
| multiply(X2,sk_c7) != X1
| inverse(X2) != sk_c7
| multiply(X5,X1) != sk_c6
| inverse(X5) != X1 ) ).
%--------------------------------------------------------------------------