TPTP Problem File: GRP207-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP207-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Group Theory
% Problem : Single non-axiom for group theory, in product & inverse
% Version : [McC93] (equality) axioms.
% English : This is a single axiom for group theory, in terms of product
% and inverse.
% Refs : [Pel98] Peltier (1998), A New Method for Automated Finite Mode
% : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [Pel98]
% Names : 4.2.2 [Pel98]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 3 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(single_non_axiom,axiom,
multiply(U,inverse(multiply(Y,multiply(multiply(multiply(Z,inverse(Z)),inverse(multiply(U,Y))),U)))) = U ).
cnf(try_prove_this_axiom,negated_conjecture,
multiply(x,inverse(multiply(y,multiply(multiply(multiply(z,inverse(z)),inverse(multiply(u,y))),x)))) != u ).
%--------------------------------------------------------------------------