TPTP Problem File: GRP199-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP199-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Group Theory (Cancellative semigroups)
% Problem : Nilpotent CS satisfy the quotient condition.
% Version : [MP96] (equality) axioms.
% English : Nilpotent cancellative semigroups satisfy the quotient condition.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : CS-13 [MP96]
% Status : Unsatisfiable
% Rating : 0.80 v9.0.0, 0.73 v8.2.0, 0.75 v8.1.0, 0.79 v7.5.0, 0.76 v7.4.0, 0.82 v7.3.0, 0.85 v7.2.0, 0.83 v7.1.0, 0.82 v7.0.0, 0.92 v6.4.0, 0.93 v6.3.0, 0.90 v6.2.0, 0.80 v6.1.0, 0.91 v6.0.0, 0.86 v5.5.0, 0.88 v5.4.0, 0.89 v5.3.0, 0.90 v5.2.0, 0.88 v5.1.0, 0.89 v5.0.0, 0.90 v4.1.0, 0.89 v4.0.1, 0.88 v4.0.0, 0.71 v3.7.0, 0.43 v3.4.0, 0.33 v3.3.0, 0.56 v3.1.0, 0.60 v2.7.0, 0.75 v2.6.0, 0.67 v2.5.0, 0.75 v2.4.0, 1.00 v2.2.1
% Syntax : Number of clauses : 8 ( 6 unt; 0 nHn; 6 RR)
% Number of literals : 10 ( 10 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 8 con; 0-2 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include Cancellative semigroups axioms
include('Axioms/GRP008-0.ax').
include('Axioms/GRP008-1.ax').
%--------------------------------------------------------------------------
%----Nilpotency:
cnf(nilpotency,hypothesis,
multiply(X,multiply(Y,multiply(Z,multiply(Y,X)))) = multiply(Y,multiply(X,multiply(Z,multiply(X,Y)))) ).
%----Denial of the quotient condition.
cnf(prove_quotient1,negated_conjecture,
multiply(b,b0) = multiply(a,a0) ).
cnf(prove_quotient2,negated_conjecture,
multiply(d,b0) = multiply(c,a0) ).
cnf(prove_quotient3,negated_conjecture,
multiply(b,d0) = multiply(a,c0) ).
cnf(prove_quotient4,negated_conjecture,
multiply(d,d0) != multiply(c,c0) ).
%--------------------------------------------------------------------------