TPTP Problem File: GRP195-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP195-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Group Theory (Semigroups)
% Problem : In semigroups, xyy=yyx -> (uv)^4 = u^4v^4.
% Version : [MP96] (equality) axioms.
% English : In semigroups, xyy=yyx -> uvuvuvuuv=uuuuvvvv.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : CS-2 [MP96]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.05 v8.2.0, 0.08 v8.1.0, 0.10 v7.5.0, 0.12 v7.4.0, 0.13 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.12 v6.0.0, 0.29 v5.5.0, 0.21 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.7.0, 0.09 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : The problem was originally posed for cancellative semigroups,
% but Otter discovered that cancellation is not necessary.
%--------------------------------------------------------------------------
%----Include semigroups axioms
include('Axioms/GRP008-0.ax').
%--------------------------------------------------------------------------
%----Hypothesis:
cnf(condition,hypothesis,
multiply(X,multiply(Y,Y)) = multiply(Y,multiply(Y,X)) ).
%----Denial of conclusion:
cnf(prove_this,negated_conjecture,
multiply(a,multiply(b,multiply(a,multiply(b,multiply(a,multiply(b,multiply(a,b))))))) != multiply(a,multiply(a,multiply(a,multiply(a,multiply(b,multiply(b,multiply(b,b))))))) ).
%--------------------------------------------------------------------------