TPTP Problem File: GRP186-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP186-2 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : Application of distributivity and group theory
% Version : [Fuc94] (equality) axioms : Augmented.
% English :
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [Sch95]
% Names : p23 [Sch95]
% Status : Unsatisfiable
% Rating : 0.41 v8.2.0, 0.54 v8.1.0, 0.65 v7.5.0, 0.46 v7.4.0, 0.52 v7.3.0, 0.37 v7.1.0, 0.28 v7.0.0, 0.42 v6.4.0, 0.53 v6.3.0, 0.47 v6.2.0, 0.50 v6.1.0, 0.62 v6.0.0, 0.67 v5.5.0, 0.74 v5.4.0, 0.60 v5.3.0, 0.58 v5.2.0, 0.57 v5.1.0, 0.47 v5.0.0, 0.50 v4.1.0, 0.45 v4.0.1, 0.43 v4.0.0, 0.38 v3.7.0, 0.33 v3.4.0, 0.38 v3.3.0, 0.36 v3.1.0, 0.33 v2.7.0, 0.55 v2.6.0, 0.50 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1, 0.78 v2.2.0, 0.86 v2.1.0, 0.86 v2.0.0
% Syntax : Number of clauses : 19 ( 19 unt; 0 nHn; 2 RR)
% Number of literals : 19 ( 19 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 36 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > product > greatest_lower_bound >
% least_upper_bound > identity > a > b
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(p23_1,hypothesis,
inverse(identity) = identity ).
cnf(p23_2,hypothesis,
inverse(inverse(X)) = X ).
cnf(p23_3,hypothesis,
inverse(multiply(X,Y)) = multiply(inverse(Y),inverse(X)) ).
cnf(prove_p23,negated_conjecture,
least_upper_bound(multiply(a,b),identity) != multiply(a,inverse(greatest_lower_bound(a,inverse(b)))) ).
%--------------------------------------------------------------------------