TPTP Problem File: GRP167-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP167-5 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : Product of positive and negative parts
% Version : [Fuc94] (equality) axioms : Augmented.
% English : Each element in a lattice ordered group can be stated as a
% product of it's positive and it's negative part.
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% : [Dah95] Dahn (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.23 v9.0.0, 0.18 v8.2.0, 0.21 v8.1.0, 0.20 v7.5.0, 0.21 v7.4.0, 0.30 v7.3.0, 0.26 v7.1.0, 0.17 v7.0.0, 0.21 v6.4.0, 0.32 v6.3.0, 0.24 v6.2.0, 0.21 v6.1.0, 0.25 v6.0.0, 0.43 v5.5.0, 0.47 v5.4.0, 0.27 v5.3.0, 0.17 v5.2.0, 0.21 v5.1.0, 0.20 v5.0.0, 0.14 v4.1.0, 0.18 v4.0.1, 0.14 v4.0.0, 0.15 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.14 v3.1.0, 0.11 v2.7.0, 0.09 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.20 v2.0.0
% Syntax : Number of clauses : 21 ( 21 unt; 0 nHn; 1 RR)
% Number of literals : 21 ( 21 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 2 con; 0-2 aty)
% Number of variables : 43 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > greatest_lower_bound >
% least_upper_bound > product > negative_part > positive_part >
% identity > a
% : This is a standardized version of the problem that appears in
% [Sch95].
% : [Dah95] suggested the addition of p10 as a useful lemma.
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
% : v1.2.1 - Clause p10 fixed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
%----Extra lemma
cnf(p10,axiom,
inverse(least_upper_bound(A,B)) = greatest_lower_bound(inverse(A),inverse(B)) ).
cnf(lat4_1,axiom,
positive_part(X) = least_upper_bound(X,identity) ).
cnf(lat4_2,axiom,
negative_part(X) = greatest_lower_bound(X,identity) ).
cnf(lat4_3,axiom,
least_upper_bound(X,greatest_lower_bound(Y,Z)) = greatest_lower_bound(least_upper_bound(X,Y),least_upper_bound(X,Z)) ).
cnf(lat4_4,axiom,
greatest_lower_bound(X,least_upper_bound(Y,Z)) = least_upper_bound(greatest_lower_bound(X,Y),greatest_lower_bound(X,Z)) ).
cnf(prove_lat4,negated_conjecture,
a != multiply(positive_part(a),negative_part(a)) ).
%--------------------------------------------------------------------------