TPTP Problem File: GRP165-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP165-1 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : An application of monotonicity
% Version : [Fuc94] (equality) axioms.
% English : Essentially a simple application of monotonicity, more
% difficult when proved from the equations replacing
% monotonicity.
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [Sch95]
% Names : lat1a [Sch95]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v7.0.0, 0.05 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.06 v6.0.0, 0.10 v5.5.0, 0.05 v5.4.0, 0.00 v2.0.0
% Syntax : Number of clauses : 17 ( 17 unt; 0 nHn; 2 RR)
% Number of literals : 17 ( 17 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 33 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > product > greatest_lower_bound >
% least_upper_bound > identity > a
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(lat1a_1,hypothesis,
least_upper_bound(a,identity) = a ).
cnf(prove_lat1a,negated_conjecture,
least_upper_bound(a,multiply(a,a)) != multiply(a,a) ).
%--------------------------------------------------------------------------