TPTP Problem File: GRP147-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP147-1 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : Prove least upper-bound axiom using the GLB transformation
% Version : [Fuc94] (equality) axioms.
% English : This problem proves the original least upper-bound axiom from
% the equational axiomatization.
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [Sch95]
% Names : ax_lub1b [Sch95]
% Status : Unsatisfiable
% Rating : 0.00 v8.2.0, 0.04 v8.1.0, 0.05 v7.5.0, 0.04 v7.4.0, 0.09 v7.3.0, 0.00 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.06 v6.0.0, 0.29 v5.5.0, 0.26 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.0.0, 0.00 v4.0.0, 0.08 v3.7.0, 0.00 v3.4.0, 0.12 v3.3.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.43 v2.0.0
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 3 RR)
% Number of literals : 18 ( 18 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 33 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > product > greatest_lower_bound >
% least_upper_bound > identity > a > b > c
% : ORDERING LPO greatest_lower_bound > least_upper_bound >
% inverse > product > identity > a > b > c
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(ax_lub1b_1,hypothesis,
greatest_lower_bound(a,c) = a ).
cnf(ax_lub1b_2,hypothesis,
greatest_lower_bound(b,c) = b ).
cnf(prove_ax_lub1b,negated_conjecture,
greatest_lower_bound(least_upper_bound(a,b),c) != least_upper_bound(a,b) ).
%--------------------------------------------------------------------------