TPTP Problem File: GRP132-2.002.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP132-2.002 : TPTP v9.0.0. Released v1.2.0.
% Domain : Group Theory (Quasigroups)
% Problem : (3,1,2) conjugate orthogonality, no idempotence
% Version : [Sla93] axioms : Augmented.
% English : Generate the multiplication table for the specified quasi-
% group with 2 elements.
% Refs : [FSB93] Fujita et al. (1993), Automatic Generation of Some Res
% : [Sla93] Slaney (1993), Email to G. Sutcliffe
% : [SFS95] Slaney et al. (1995), Automated Reasoning and Exhausti
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v9.0.0, 0.00 v2.1.0
% Syntax : Number of clauses : 13 ( 6 unt; 1 nHn; 13 RR)
% Number of literals : 32 ( 0 equ; 21 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 29 ( 0 sgn)
% SPC : CNF_UNS_EPR_NEQ_NHN
% Comments : Slaney's [1993] axiomatization has been modified for this.
% : Substitution axioms are not needed, as any positive equality
% literals should resolve on negative ones directly.
% : As in GRP130-1, either one of qg2_1 or qg2_2 may be used, as
% each implies the other in this scenario, with the help of
% cancellation. The dependence cannot be proved, so both have
% been left in here.
% : This version adds a simple isomorphism avoidance clause,
% mentioned in [FSB93].
% : tptp2X: -f tptp -s2 GRP132-2.g
%--------------------------------------------------------------------------
cnf(e_1_then_e_2,axiom,
next(e_1,e_2) ).
cnf(e_2_greater_e_1,axiom,
greater(e_2,e_1) ).
cnf(no_redundancy,axiom,
( ~ product(X,e_1,Y)
| ~ next(X,X1)
| ~ greater(Y,X1) ) ).
cnf(element_1,axiom,
group_element(e_1) ).
cnf(element_2,axiom,
group_element(e_2) ).
cnf(e_1_is_not_e_2,axiom,
~ equalish(e_1,e_2) ).
cnf(e_2_is_not_e_1,axiom,
~ equalish(e_2,e_1) ).
cnf(product_total_function1,axiom,
( ~ group_element(X)
| ~ group_element(Y)
| product(X,Y,e_1)
| product(X,Y,e_2) ) ).
cnf(product_total_function2,axiom,
( ~ product(X,Y,W)
| ~ product(X,Y,Z)
| equalish(W,Z) ) ).
cnf(product_right_cancellation,axiom,
( ~ product(X,W,Y)
| ~ product(X,Z,Y)
| equalish(W,Z) ) ).
cnf(product_left_cancellation,axiom,
( ~ product(W,Y,X)
| ~ product(Z,Y,X)
| equalish(W,Z) ) ).
cnf(qg2_1,negated_conjecture,
( ~ product(X1,Y1,Z1)
| ~ product(X2,Y2,Z1)
| ~ product(Z2,X1,Y1)
| ~ product(Z2,X2,Y2)
| equalish(X1,X2) ) ).
cnf(qg2_2,negated_conjecture,
( ~ product(X1,Y1,Z1)
| ~ product(X2,Y2,Z1)
| ~ product(Z2,X1,Y1)
| ~ product(Z2,X2,Y2)
| equalish(Y1,Y2) ) ).
%--------------------------------------------------------------------------