TPTP Problem File: GRP123-4.003.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP123-4.003 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Quasigroups)
% Problem : (3,2,1) conjugate orthogonality
% Version : [Sla93] axioms : Augmented.
% English : If ab=xy and a*b = x*y then a=x and b=y, where c*b=a iff ab=c.
% Generate the multiplication table for the specified quasi-
% group with 3 elements.
% Refs : [FSB93] Fujita et al. (1993), Automatic Generation of Some Res
% : [Sla93] Slaney (1993), Email to G. Sutcliffe
% : [Zha94] Zhang (1994), Email to G. Sutcliffe
% : [SFS95] Slaney et al. (1995), Automated Reasoning and Exhausti
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v9.0.0, 0.00 v2.1.0
% Syntax : Number of clauses : 18 ( 10 unt; 3 nHn; 17 RR)
% Number of literals : 44 ( 0 equ; 26 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 31 ( 0 sgn)
% SPC : CNF_UNS_EPR_NEQ_NHN
% Comments : [SFS93]'s axiomatization has been modified for this.
% : Substitution axioms are not needed, as any positive equality
% literals should resolve on negative ones directly.
% : [Zha94] has pointed out that either one of qg1_1
% or qg1_2 may be used, as each implies the other in this
% scenario, with the help of cancellation. The dependence
% cannot be proved, so both have been left in here.
% : Version 4 has surjectivity and rotation
% : tptp2X: -f tptp -s3 GRP123-4.g
% Bugfixes : v1.2.1 - Clauses row_surjectivity and column_surjectivity fixed.
%--------------------------------------------------------------------------
cnf(row_surjectivity,axiom,
( ~ group_element(X)
| ~ group_element(Y)
| product(e_1,X,Y)
| product(e_2,X,Y)
| product(e_3,X,Y) ) ).
cnf(column_surjectivity,axiom,
( ~ group_element(X)
| ~ group_element(Y)
| product(X,e_1,Y)
| product(X,e_2,Y)
| product(X,e_3,Y) ) ).
cnf(element_1,axiom,
group_element(e_1) ).
cnf(element_2,axiom,
group_element(e_2) ).
cnf(element_3,axiom,
group_element(e_3) ).
cnf(e_1_is_not_e_2,axiom,
~ equalish(e_1,e_2) ).
cnf(e_1_is_not_e_3,axiom,
~ equalish(e_1,e_3) ).
cnf(e_2_is_not_e_1,axiom,
~ equalish(e_2,e_1) ).
cnf(e_2_is_not_e_3,axiom,
~ equalish(e_2,e_3) ).
cnf(e_3_is_not_e_1,axiom,
~ equalish(e_3,e_1) ).
cnf(e_3_is_not_e_2,axiom,
~ equalish(e_3,e_2) ).
cnf(product_total_function1,axiom,
( ~ group_element(X)
| ~ group_element(Y)
| product(X,Y,e_1)
| product(X,Y,e_2)
| product(X,Y,e_3) ) ).
cnf(product_total_function2,axiom,
( ~ product(X,Y,W)
| ~ product(X,Y,Z)
| equalish(W,Z) ) ).
cnf(product_right_cancellation,axiom,
( ~ product(X,W,Y)
| ~ product(X,Z,Y)
| equalish(W,Z) ) ).
cnf(product_left_cancellation,axiom,
( ~ product(W,Y,X)
| ~ product(Z,Y,X)
| equalish(W,Z) ) ).
cnf(product_idempotence,axiom,
product(X,X,X) ).
cnf(qg1_1,negated_conjecture,
( ~ product(X1,Y1,Z1)
| ~ product(X2,Y2,Z1)
| ~ product(Z2,Y1,X1)
| ~ product(Z2,Y2,X2)
| equalish(X1,X2) ) ).
cnf(qg1_2,negated_conjecture,
( ~ product(X1,Y1,Z1)
| ~ product(X2,Y2,Z1)
| ~ product(Z2,Y1,X1)
| ~ product(Z2,Y2,X2)
| equalish(Y1,Y2) ) ).
%--------------------------------------------------------------------------