TPTP Problem File: GRP116-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP116-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Group Theory
% Problem : Derive left identity from a single axiom for groups order 3
% Version : [Wos96] (equality) axioms.
% English :
% Refs : [Wos96] Wos (1996), The Automation of Reasoning: An Experiment
% Source : [OTTER]
% Names : groups.exp3.in part 2 [OTTER]
% Status : Unsatisfiable
% Rating : 0.09 v8.2.0, 0.12 v8.1.0, 0.15 v7.5.0, 0.12 v7.4.0, 0.17 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.11 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.26 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.0.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.14 v2.0.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
multiply(X,multiply(multiply(X,multiply(multiply(X,Y),Z)),multiply(identity,multiply(Z,Z)))) = Y ).
cnf(prove_order3,negated_conjecture,
multiply(identity,a) != a ).
%--------------------------------------------------------------------------