TPTP Problem File: GRP113-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP113-1 : TPTP v9.0.0. Released v1.1.0.
% Domain : Group Theory
% Problem : Lemma for proving all groups of order 4 are cyclic
% Version : [MOW76] (equality) axioms : Augmented.
% English : Prove that any group of order 4 must satisfy one of the
% following relations, where the elements of the group are
% a, b, c, and the identity.
% 1) the square of every element is the identity.
% 2) the square of a is b, the cube of a is c, and the fourth
% power of a is the identity.
% 3) the square of b is c, the cube of b is a, and the fourth
% power of b is the identity.
% 4) the square of c is a, the cube of c is b, and the fourth
% Refs : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [Wos88]
% Names : Test Problem 7 [Wos88]
% : Groups of Order 4 [Wos88]
% Status : Unsatisfiable
% Rating : 0.40 v9.0.0, 0.47 v8.2.0, 0.31 v8.1.0, 0.32 v7.5.0, 0.29 v7.3.0, 0.31 v7.2.0, 0.25 v7.1.0, 0.27 v7.0.0, 0.31 v6.4.0, 0.29 v6.3.0, 0.40 v6.2.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.71 v5.5.0, 0.75 v5.4.0, 0.78 v5.3.0, 0.70 v5.2.0, 0.62 v5.1.0, 0.67 v5.0.0, 0.70 v4.1.0, 0.67 v4.0.1, 0.75 v4.0.0, 0.71 v3.4.0, 0.67 v3.3.0, 0.56 v3.2.0, 0.78 v3.1.0, 0.60 v2.7.0, 0.62 v2.6.0, 1.00 v2.0.0
% Syntax : Number of clauses : 16 ( 11 unt; 1 nHn; 10 RR)
% Number of literals : 27 ( 27 equ; 18 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include the axioms for named groups
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
%----Redundant two axioms
cnf(right_identity,axiom,
multiply(X,identity) = X ).
cnf(right_inverse,axiom,
multiply(X,inverse(X)) = identity ).
cnf(all_of_group1,hypothesis,
( X = a
| X = b
| X = c
| X = identity ) ).
cnf(a_not_b,hypothesis,
a != b ).
cnf(a_not_c,hypothesis,
a != c ).
cnf(a_not_identity,hypothesis,
a != identity ).
cnf(b_not_c,hypothesis,
b != c ).
cnf(b_not_identity,hypothesis,
b != identity ).
cnf(c_not_identity,hypothesis,
c != identity ).
cnf(square_identity,negated_conjecture,
( multiply(a,a) != identity
| multiply(b,b) != identity
| multiply(c,c) != identity ) ).
cnf(condition_a,negated_conjecture,
( multiply(a,a) != b
| multiply(a,multiply(a,a)) != c
| multiply(a,multiply(a,multiply(a,a))) != identity ) ).
cnf(condition_b,negated_conjecture,
( multiply(b,b) != c
| multiply(b,multiply(b,b)) != a
| multiply(b,multiply(b,multiply(b,b))) != identity ) ).
cnf(condition_c,negated_conjecture,
( multiply(c,c) != a
| multiply(c,multiply(c,c)) != b
| multiply(c,multiply(c,multiply(c,c))) != identity ) ).
%--------------------------------------------------------------------------