TPTP Problem File: GRP112-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP112-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Single axiom for group theory, in product & inverse
% Version : [McC93] (equality) axioms.
% English : This is a single axiom for groups in which the square
% of every element is the identity, in terms of product and
% inverse.
% Refs : [MP68] Meredith & Prior (1968), Equational Logic
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [McC93]
% Names : GT2 [LW92]
% Status : Satisfiable
% Rating : 0.56 v9.0.0, 0.40 v8.2.0, 0.70 v8.1.0, 0.62 v7.5.0, 0.67 v7.4.0, 0.64 v7.3.0, 0.67 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.25 v6.2.0, 0.40 v6.1.0, 0.56 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.80 v5.0.0, 0.78 v4.1.0, 0.71 v4.0.1, 0.80 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.86 v2.5.0, 0.67 v2.4.0, 1.00 v2.0.0
% Syntax : Number of clauses : 2 ( 1 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 4 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 9 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : The group axioms that are proved are different from those
% given in [LW92]. Rather those suggested in [McC93] are used.
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
multiply(multiply(multiply(X,Y),Z),multiply(X,Z)) = Y ).
cnf(prove_these_axioms,negated_conjecture,
( multiply(inverse(a1),a1) != multiply(inverse(b1),b1)
| multiply(multiply(inverse(b2),b2),a2) != a2
| multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
| multiply(a4,a4) != multiply(b4,b4) ) ).
%--------------------------------------------------------------------------