TPTP Problem File: GRP093-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP093-1 : TPTP v9.0.0. Bugfixed v2.7.0.
% Domain : Group Theory (Abelian)
% Problem : Single axiom for Abelian group theory, in division and identity
% Version : [McC93] (equality) axioms.
% English : This is a single axiom for Abelian group theory, in terms
% of division and identity
% Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [McC93]
% Names : Axiom 3.9.1 [McC93]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.07 v8.2.0, 0.12 v8.1.0, 0.11 v7.5.0, 0.18 v7.3.0, 0.15 v7.2.0, 0.17 v7.1.0, 0.09 v7.0.0, 0.00 v6.4.0, 0.14 v6.3.0, 0.10 v6.2.0, 0.30 v6.1.0, 0.18 v6.0.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.11 v5.3.0, 0.30 v5.2.0, 0.12 v5.1.0, 0.11 v5.0.0, 0.20 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.00 v3.3.0, 0.11 v3.2.0, 0.00 v2.7.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 4 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 10 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
% Bugfixes : v2.3.0 - Deleted division, added mltiply and inverse, fixed
% prove_these_axioms.
% : v2.7.0 - Grounded conjecture
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
divide(divide(identity,divide(divide(divide(X,Y),Z),X)),Z) = Y ).
%----Definition of multiply
cnf(multiply,axiom,
multiply(X,Y) = divide(X,divide(identity,Y)) ).
%----Definition of inverse
cnf(inverse,axiom,
inverse(X) = divide(identity,X) ).
%----Definition of identity
cnf(identity,axiom,
identity = divide(X,X) ).
cnf(prove_these_axioms,negated_conjecture,
( multiply(inverse(a1),a1) != multiply(inverse(b1),b1)
| multiply(multiply(inverse(b2),b2),a2) != a2
| multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
| multiply(a4,b4) != multiply(b4,a4) ) ).
%--------------------------------------------------------------------------