TPTP Problem File: GRP084-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP084-1 : TPTP v9.0.0. Bugfixed v2.7.0.
% Domain : Group Theory (Abelian)
% Problem : Single axiom for Abelian group theory, in product and inverse
% Version : [McC93] (equality) axioms.
% English : This is a single axiom for Abelian group theory, in terms
% of product and inverse.
% Refs : [Neu81] Neumann (1981), Another Single Law for Groups
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [McC93]
% Names : GT6 [LW92]
% : Axiom 2.4 [McC93]
% Status : Unsatisfiable
% Rating : 0.73 v9.0.0, 0.60 v8.2.0, 0.75 v8.1.0, 0.74 v7.5.0, 0.76 v7.4.0, 0.71 v7.3.0, 0.62 v7.2.0, 0.67 v7.1.0, 0.55 v7.0.0, 0.62 v6.4.0, 0.64 v6.3.0, 0.50 v6.2.0, 0.70 v6.1.0, 0.73 v6.0.0, 0.71 v5.5.0, 0.75 v5.4.0, 0.89 v5.3.0, 0.90 v5.2.0, 0.88 v5.1.0, 0.89 v5.0.0, 0.90 v4.1.0, 0.89 v4.0.1, 0.88 v4.0.0, 0.71 v3.7.0, 0.86 v3.4.0, 0.83 v3.3.0, 0.78 v3.2.0, 0.67 v3.1.0, 0.80 v2.7.0
% Syntax : Number of clauses : 2 ( 1 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 4 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 10 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 9 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
% Bugfixes : v2.7.0 - Grounded conjecture
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
multiply(inverse(multiply(inverse(multiply(inverse(multiply(X,Y)),multiply(Y,X))),multiply(inverse(multiply(Z,U)),multiply(Z,inverse(multiply(multiply(V,inverse(W)),inverse(U))))))),W) = V ).
cnf(prove_these_axioms,negated_conjecture,
( multiply(inverse(a1),a1) != multiply(inverse(b1),b1)
| multiply(multiply(inverse(b2),b2),a2) != a2
| multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
| multiply(a4,b4) != multiply(b4,a4) ) ).
%--------------------------------------------------------------------------