TPTP Problem File: GRP081-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP081-1 : TPTP v9.0.0. Bugfixed v2.3.0.
% Domain : Group Theory
% Problem : Single axiom for group theory, in double division and inverse
% Version : [McC93] (equality) axioms.
% English : This is a single axiom for group theory, in terms of double
% division and inverse.
% Refs : [Neu86] Neumann (1986), Yet Another Single Law for Groups
% : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [McC93]
% Names : Axiom 2.5 [McC93]
% Status : Satisfiable
% Rating : 0.56 v9.0.0, 0.50 v8.2.0, 0.70 v8.1.0, 0.62 v7.5.0, 0.67 v7.4.0, 0.64 v7.3.0, 0.67 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.25 v6.2.0, 0.30 v6.1.0, 0.44 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.80 v5.0.0, 0.78 v4.1.0, 0.71 v4.0.1, 1.00 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.86 v2.5.0, 0.67 v2.4.0, 1.00 v2.3.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 7 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments :
% Bugfixes : v2.3.0 - Deleted double_division, added multiply.
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
inverse(double_divide(double_divide(X,double_divide(double_divide(Y,Z),inverse(double_divide(Y,double_divide(inverse(U),inverse(Z)))))),X)) = U ).
%----Definition of multiply
cnf(multiply,axiom,
multiply(X,Y) = inverse(double_divide(Y,X)) ).
cnf(prove_these_axioms,negated_conjecture,
( multiply(inverse(a1),a1) != multiply(inverse(b1),b1)
| multiply(multiply(inverse(b2),b2),a2) != a2
| multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ) ).
%--------------------------------------------------------------------------