TPTP Problem File: GRP040-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP040-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Subgroups)
% Problem : In subgroups of order 2, inverse is an involution
% Version : [Wos65] axioms.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.20 v8.2.0, 0.19 v8.1.0, 0.16 v7.4.0, 0.29 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.27 v6.4.0, 0.33 v6.3.0, 0.27 v6.2.0, 0.40 v6.1.0, 0.43 v6.0.0, 0.30 v5.5.0, 0.60 v5.4.0, 0.55 v5.3.0, 0.56 v5.2.0, 0.44 v5.1.0, 0.47 v5.0.0, 0.36 v4.1.0, 0.31 v4.0.1, 0.45 v3.7.0, 0.20 v3.5.0, 0.27 v3.4.0, 0.25 v3.3.0, 0.29 v3.2.0, 0.23 v3.1.0, 0.27 v2.7.0, 0.42 v2.6.0, 0.40 v2.5.0, 0.33 v2.4.0, 0.33 v2.3.0, 0.44 v2.2.1, 0.56 v2.2.0, 0.67 v2.1.0, 0.78 v2.0.0
% Syntax : Number of clauses : 17 ( 11 unt; 2 nHn; 9 RR)
% Number of literals : 32 ( 2 equ; 13 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 30 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%----Include sub-group theory axioms
include('Axioms/GRP003-2.ax').
%--------------------------------------------------------------------------
%----Definition of subgroup of index 2
cnf(an_element_in_O2,axiom,
( subgroup_member(element_in_O2(A,B))
| subgroup_member(B)
| subgroup_member(A) ) ).
cnf(property_of_O2,axiom,
( product(A,element_in_O2(A,B),B)
| subgroup_member(B)
| subgroup_member(A) ) ).
cnf(a_in_subgroup,hypothesis,
~ subgroup_member(a) ).
cnf(b_is_in_subgroup,hypothesis,
subgroup_member(b) ).
cnf(d_in_subgroup,hypothesis,
~ subgroup_member(d) ).
cnf(b_times_a_inverse_is_c,hypothesis,
product(b,inverse(a),c) ).
cnf(a_times_c_is_d,hypothesis,
product(a,c,d) ).
cnf(prove_inverse_is_self_cancelling,negated_conjecture,
inverse(inverse(A)) = A ).
%--------------------------------------------------------------------------