TPTP Problem File: GRP038-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP038-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Subgroups)
% Problem : In subgroups, if a and b are members, then a.b^-1 is a member
% Version : [Wos65] axioms : Augmented.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 18 [Wos65]
% : wos18 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 15 ( 10 unt; 0 nHn; 10 RR)
% Number of literals : 27 ( 1 equ; 13 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 26 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : This is trivial - its an axiom.
% : Two extra lemmas are supplied.
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%----Include sub-group theory axioms
include('Axioms/GRP003-2.ax').
%--------------------------------------------------------------------------
%----The next two clauses are dependent lemmas
cnf(closure_of_inverse,axiom,
( ~ subgroup_member(A)
| subgroup_member(inverse(A)) ) ).
cnf(identity_is_in_subgroup,axiom,
subgroup_member(identity) ).
cnf(a_is_in_subgroup,hypothesis,
subgroup_member(a) ).
cnf(b_is_in_subgroup,hypothesis,
subgroup_member(b) ).
cnf(a_times_inverse_b_is_c,hypothesis,
product(a,inverse(b),c) ).
cnf(prove_c_is_in_subgroup,negated_conjecture,
~ subgroup_member(c) ).
%--------------------------------------------------------------------------