TPTP Problem File: GRP037-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP037-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Subgroups)
% Problem : In subgroups, the inverse of an element is unique
% Version : [Wos65] axioms.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 17 [Wos65]
% : wos17 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.25 v5.2.0, 0.12 v5.1.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.17 v3.7.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.0.0
% Syntax : Number of clauses : 19 ( 8 unt; 0 nHn; 14 RR)
% Number of literals : 39 ( 4 equ; 21 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 38 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%----Include sub-group theory axioms
include('Axioms/GRP003-2.ax').
%--------------------------------------------------------------------------
cnf(another_left_identity,hypothesis,
( ~ subgroup_member(A)
| product(another_identity,A,A) ) ).
cnf(another_right_identity,hypothesis,
( ~ subgroup_member(A)
| product(A,another_identity,A) ) ).
cnf(another_right_inverse,hypothesis,
( ~ subgroup_member(A)
| product(A,another_inverse(A),another_identity) ) ).
cnf(another_left_inverse,hypothesis,
( ~ subgroup_member(A)
| product(another_inverse(A),A,another_identity) ) ).
cnf(another_inverse_in_subgroup,hypothesis,
( ~ subgroup_member(A)
| subgroup_member(another_inverse(A)) ) ).
cnf(product_right_cancellation,hypothesis,
( ~ product(A,B,C)
| ~ product(A,D,C)
| D = B ) ).
cnf(product_left_cancellation,hypothesis,
( ~ product(A,B,C)
| ~ product(D,B,C)
| D = A ) ).
cnf(a_is_in_subgroup,hypothesis,
subgroup_member(a) ).
cnf(another_identity_in_subgroup,hypothesis,
subgroup_member(another_identity) ).
cnf(prove_two_inverses_are_equal,negated_conjecture,
inverse(a) != another_inverse(a) ).
%--------------------------------------------------------------------------