TPTP Problem File: GRP034-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP034-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Subgroups)
% Problem : In subgroups, inverse is closed
% Version : [LS74] axioms : Incomplete.
% English :
% Refs : [LS74] Lawrence & Starkey (1974), Experimental tests of resol
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : ls26 [LS74]
% : ls26 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 9 ( 6 unt; 0 nHn; 5 RR)
% Number of literals : 18 ( 0 equ; 10 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 20 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(closure,axiom,
product(X,Y,multiply(X,Y)) ).
cnf(left_identity,axiom,
product(identity,X,X) ).
cnf(right_identity,axiom,
product(X,identity,X) ).
cnf(right_inverse,axiom,
product(X,inverse(X),identity) ).
cnf(associativity1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(closure_of_subgroup,axiom,
( ~ subgroup_member(A)
| ~ subgroup_member(B)
| ~ product(B,inverse(A),C)
| subgroup_member(C) ) ).
cnf(a_is_in_subgroup,hypothesis,
subgroup_member(a) ).
cnf(prove_inverse_is_in_subgroup,negated_conjecture,
~ subgroup_member(inverse(a)) ).
%--------------------------------------------------------------------------