TPTP Problem File: GRP033-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP033-3 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Group Theory (Subgroups)
% Problem : In subgroups, the identity is the group identity
% Version : [Wos65] axioms : Reduced > Incomplete.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 13 [Wos65]
% : wos13 [WM76]
% Status : Unsatisfiable
% Rating : 0.07 v9.0.0, 0.00 v7.4.0, 0.17 v7.3.0, 0.00 v5.4.0, 0.11 v5.3.0, 0.20 v5.2.0, 0.00 v5.1.0, 0.06 v5.0.0, 0.00 v4.1.0, 0.07 v4.0.1, 0.00 v4.0.0
% Syntax : Number of clauses : 22 ( 7 unt; 0 nHn; 14 RR)
% Number of literals : 50 ( 0 equ; 29 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 55 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : Omits j substitutivity.
% Bugfixes : v4.0.0 - Removed duplicate clause closure_of_product_and_inverse
%--------------------------------------------------------------------------
%----Include group theory axioms
%include('Axioms/GRP003-0.ax').
%----Include sub-group theory axioms
%include('Axioms/GRP003-2.ax').
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
equalish(X,X) ).
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
cnf(inverse_substitution,axiom,
( ~ equalish(X,Y)
| equalish(inverse(X),inverse(Y)) ) ).
cnf(multiply_substitution1,axiom,
( ~ equalish(X,Y)
| equalish(multiply(X,W),multiply(Y,W)) ) ).
cnf(multiply_substitution2,axiom,
( ~ equalish(X,Y)
| equalish(multiply(W,X),multiply(W,Y)) ) ).
cnf(product_substitution1,axiom,
( ~ equalish(X,Y)
| ~ product(X,W,Z)
| product(Y,W,Z) ) ).
cnf(product_substitution2,axiom,
( ~ equalish(X,Y)
| ~ product(W,X,Z)
| product(W,Y,Z) ) ).
cnf(product_substitution3,axiom,
( ~ equalish(X,Y)
| ~ product(W,Z,X)
| product(W,Z,Y) ) ).
cnf(subgroup_member_substitution,axiom,
( ~ equalish(A,B)
| ~ subgroup_member(A)
| subgroup_member(B) ) ).
%----j(A) is an element for which A is identity. In a subgroup this can
%----be any element.
%----This subsitution axiom really should be in, but Wos omits it
% input_clause(j_substitutivity1,axiom,
% [--equalish(A,B),
% ++equalish(j(A),j(B))]).
cnf(left_identity,axiom,
product(identity,X,X) ).
cnf(right_identity,axiom,
product(X,identity,X) ).
cnf(left_inverse,axiom,
product(inverse(X),X,identity) ).
cnf(right_inverse,axiom,
product(X,inverse(X),identity) ).
%----This axiom is called closure or totality in some axiomatisations
cnf(total_function1,axiom,
product(X,Y,multiply(X,Y)) ).
%----This axiom is called well_definedness in some axiomatisations
cnf(total_function2,axiom,
( ~ product(X,Y,Z)
| ~ product(X,Y,W)
| equalish(Z,W) ) ).
cnf(associativity1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(closure_of_product_and_inverse,axiom,
( ~ subgroup_member(A)
| ~ subgroup_member(B)
| ~ product(A,inverse(B),C)
| subgroup_member(C) ) ).
%----j(A) is an element for which A is identity. In a subgroup this can
%----be any element.
%----This subsitution axiom really should be in, but Wos omits it
% input_clause(j_substitutivity1,axiom,
% [--equalish(A,B),
% ++equalish(j(A),j(B))]).
cnf(a_is_in_subgroup,hypothesis,
subgroup_member(a) ).
cnf(subgr2_clause1,hypothesis,
( ~ subgroup_member(A)
| subgroup_member(j(A)) ) ).
cnf(prove_subgr2,negated_conjecture,
( ~ product(j(A),A,j(A))
| ~ product(A,j(A),j(A))
| ~ subgroup_member(A) ) ).
%--------------------------------------------------------------------------