TPTP Problem File: GRP030-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP030-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Semigroups)
% Problem : In semigroups, left id and inverse => left id=right id
% Version : [MOW76] axioms.
% English : If there are a left identity and left inverse, then the left
% identity is also a right identity.
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 2 [Wos65]
% : wos2 [WM76]
% : G3 [MOW76]
% : ident1.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.29 v5.0.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.17 v3.7.0, 0.00 v2.0.0
% Syntax : Number of clauses : 7 ( 4 unt; 0 nHn; 4 RR)
% Number of literals : 15 ( 1 equ; 9 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 20 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : This can also be viewed as a group theory problem, showing
% that the right identity axiom is dependant on the rest of the
% axiom set; i.e., if e is the left identity, then e is also
% a right identity.
%--------------------------------------------------------------------------
%----Include semi-group axioms
include('Axioms/GRP002-0.ax').
%--------------------------------------------------------------------------
cnf(left_identity,hypothesis,
product(identity,A,A) ).
cnf(left_inverse,hypothesis,
product(inverse(A),A,identity) ).
cnf(prove_identity_is_a_right_identity,negated_conjecture,
~ product(a,identity,a) ).
%--------------------------------------------------------------------------