TPTP Problem File: GRP029-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP029-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Semigroups)
% Problem : In semigroups, left id and inverse => right id exists
% Version : [MOW76] axioms : Incomplete.
% English : If there are a left identity and left inverse, then there
% is a right identity element.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [SPRFN]
% Names : G5 [MOW76]
% Status : Unsatisfiable
% Rating : 0.07 v9.0.0, 0.00 v7.4.0, 0.17 v7.3.0, 0.00 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.00 v2.2.1, 0.11 v2.1.0, 0.14 v2.0.0
% Syntax : Number of clauses : 16 ( 5 unt; 0 nHn; 10 RR)
% Number of literals : 36 ( 0 equ; 21 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 47 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : This may also be viewed as a group theory problem, to prove
% that the right identity axiom is dependant on the rest of the
% axiom set; i.e., each element has a right identity. Note that
% this is a corollary to proving that the right identity axiom
% is dependant on the rest of the axiom set, but also that the
% proof is different due to the introduction of a skolem
% function for the right identity of each element of the group.
% : The not_right_identity substitution axioms are missing.
%--------------------------------------------------------------------------
%----Include semi-group axioms
%include('Axioms/GRP002-0.ax').
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
equalish(X,X) ).
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
cnf(multiply_substitution1,axiom,
( ~ equalish(X,Y)
| equalish(multiply(X,W),multiply(Y,W)) ) ).
cnf(multiply_substitution2,axiom,
( ~ equalish(X,Y)
| equalish(multiply(W,X),multiply(W,Y)) ) ).
cnf(product_substitution1,axiom,
( ~ equalish(X,Y)
| ~ product(X,W,Z)
| product(Y,W,Z) ) ).
cnf(product_substitution2,axiom,
( ~ equalish(X,Y)
| ~ product(W,X,Z)
| product(W,Y,Z) ) ).
cnf(product_substitution3,axiom,
( ~ equalish(X,Y)
| ~ product(W,Z,X)
| product(W,Z,Y) ) ).
cnf(inverse_substitution,axiom,
( ~ equalish(X,Y)
| equalish(inverse(X),inverse(Y)) ) ).
%----This axiom is called closure or totality in some axiomatisations
cnf(total_function1,axiom,
product(X,Y,multiply(X,Y)) ).
%----This axiom is called well_definedness in some axiomatisations
cnf(total_function2,axiom,
( ~ product(X,Y,Z)
| ~ product(X,Y,W)
| equalish(Z,W) ) ).
cnf(associativity1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(left_identity,axiom,
product(identity,A,A) ).
cnf(left_inverse,axiom,
product(inverse(A),A,identity) ).
cnf(prove_there_is_a_right_identity,negated_conjecture,
~ product(not_right_identity(A),A,not_right_identity(A)) ).
%--------------------------------------------------------------------------