TPTP Problem File: GRP028-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP028-2 : TPTP v9.0.0. Released v1.1.0.
% Domain : Group Theory (Semigroups)
% Problem : In semigroups, left and right solutions => right id exists
% Version : [MOW76] axioms.
% English : If there are left and right solutions, then there is a right
% identity element.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v6.4.0, 0.14 v6.3.0, 0.00 v6.0.0, 0.11 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.29 v5.0.0, 0.14 v4.1.0, 0.22 v4.0.1, 0.17 v3.7.0, 0.00 v3.3.0, 0.14 v3.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 7 ( 4 unt; 0 nHn; 4 RR)
% Number of literals : 15 ( 1 equ; 9 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 23 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Semigroup axioms
include('Axioms/GRP002-0.ax').
%--------------------------------------------------------------------------
cnf(left_soln,hypothesis,
product(left_solution(X,Y),X,Y) ).
cnf(right_soln,hypothesis,
product(X,right_solution(X,Y),Y) ).
%----There is an element for which no X is identity
cnf(prove_there_is_a_right_identity,negated_conjecture,
~ product(not_identity(X),X,not_identity(X)) ).
%--------------------------------------------------------------------------