TPTP Problem File: GRP028-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP028-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory (Semigroups)
% Problem : In semigroups, left and right solutions => right id exists
% Version : [Cha70] axioms : Incomplete.
% English : If there are left and right solutions, then there is a right
% identity element.
% Refs : [Sla67] Slagle (1967), Automatic Theorem Proving with Renamabl
% : [Cha70] Chang (1970), The Unit Proof and the Input Proof in Th
% : [RR+72] Reboh et al. (1972), Study of automatic theorem provin
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [Cha70]
% Names : ALGEBRA THEOREM [Sla67]
% : Example 1 [Cha70]
% : GROUP1 [RR+72]
% : GROUP1 [WM76]
% : EX1 [SPRFN]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 4 ( 3 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 4 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 3-3 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(associativity,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(left_soln,hypothesis,
product(left_solution(X,Y),X,Y) ).
cnf(right_soln,hypothesis,
product(X,right_solution(X,Y),Y) ).
%----There is an element for which no X is identity
cnf(prove_there_is_a_right_identity,negated_conjecture,
~ product(not_identity(X),X,not_identity(X)) ).
%--------------------------------------------------------------------------