TPTP Problem File: GRP025-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP025-2 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Named groups)
% Problem : All groups of order 2 are isomorphic
% Version : [MOW76] axioms.
% Theorem formulation : Proves full generality.
% English : If G1 has exactly two elements and G2 has exactly two
% elements, then there exists an isomorphism [a one-to-one and
% onto homomorphism] between them.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : G8 [ANL]
% Status : Satisfiable
% Rating : 0.67 v9.0.0, 0.60 v8.2.0, 0.80 v8.1.0, 0.75 v7.5.0, 0.78 v7.4.0, 0.73 v7.3.0, 0.78 v7.1.0, 0.75 v7.0.0, 0.71 v6.4.0, 0.43 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.56 v6.0.0, 0.57 v5.5.0, 0.62 v5.4.0, 0.90 v5.3.0, 0.89 v5.2.0, 0.90 v5.0.0, 0.89 v4.1.0, 0.86 v4.0.1, 0.80 v4.0.0, 0.75 v3.7.0, 0.67 v3.5.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.86 v2.5.0, 0.83 v2.4.0, 1.00 v2.3.0, 0.67 v2.2.1, 0.75 v2.2.0, 1.00 v2.1.0, 0.75 v2.0.0
% Syntax : Number of clauses : 39 ( 30 unt; 2 nHn; 30 RR)
% Number of literals : 57 ( 18 equ; 24 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 14 ( 14 usr; 9 con; 0-3 aty)
% Number of variables : 42 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : In order to prove the theorem, we specify one element of each
% group as the identity element and take as a previously-proven
% lemma (obvious) that maps from G1 -> G2 which are not
% one-to-one or which are not onto need not be considered for
% isomorphisms between the groups. Thus we consider only the
% two one-to-one and onto maps between the groups, and show
% that assuming neither of them are homomorphisms gives
% a contradiction.
% Bugfixes : v1.2.1 - Bugfix in GRP006-0.ax.
%--------------------------------------------------------------------------
%----Include the axioms for named groups
include('Axioms/GRP006-0.ax').
%--------------------------------------------------------------------------
%----Definition of the two groups
cnf(two_groups,hypothesis,
g1 != g2 ).
cnf(a_member_of_group1,hypothesis,
group_member(a,g1) ).
cnf(b_member_of_group1,hypothesis,
group_member(b,g1) ).
cnf(a_not_b,hypothesis,
a != b ).
cnf(c_member_of_group2,hypothesis,
group_member(c,g2) ).
cnf(d_member_of_group2,hypothesis,
group_member(d,g2) ).
cnf(c_not_d,hypothesis,
c != d ).
cnf(a_not_c,hypothesis,
a != c ).
cnf(a_not_d,hypothesis,
a != d ).
cnf(b_not_c,hypothesis,
b != c ).
cnf(b_not_d,hypothesis,
b != d ).
cnf(a_and_b_only_members_of_group1,hypothesis,
( ~ group_member(X,g1)
| X = a
| X = b ) ).
cnf(c_and_d_only_members_of_group2,hypothesis,
( ~ group_member(X,g2)
| X = c
| X = d ) ).
%----a is the identity of group1, c of group2
cnf(a_identity_of_group1,hypothesis,
identity_for(g1) = a ).
cnf(c_identity_of_group2,hypothesis,
identity_for(g2) = c ).
cnf(a_left_identity,hypothesis,
product(g1,a,X,X) ).
cnf(a_right_identity,hypothesis,
product(g1,X,a,X) ).
cnf(c_left_identity,hypothesis,
product(g2,c,X,X) ).
cnf(c_right_identity,hypothesis,
product(g2,X,c,X) ).
%----Definition of the two possible isomorphisms
cnf(a_maps1_to_c,hypothesis,
isomorphism1(a) = c ).
cnf(b_maps1_to_d,hypothesis,
isomorphism1(b) = d ).
cnf(a_maps2_to_d,hypothesis,
isomorphism2(a) = d ).
cnf(b_maps2_to_c,hypothesis,
isomorphism2(b) = c ).
%----Uniqueness of isomorphism (a function)
%----Denial that one of the two isomorphisms is one
cnf(d1_member_of_group1,negated_conjecture,
group_member(d1,g1) ).
cnf(d2_member_of_group1,negated_conjecture,
group_member(d2,g1) ).
cnf(d3_member_of_group1,negated_conjecture,
group_member(d3,g1) ).
cnf(d1_times_d2_is_d3,negated_conjecture,
product(g1,d1,d2,d3) ).
cnf(prove_one_product_holds_in_group2,negated_conjecture,
( ~ product(g2,isomorphism1(d1),isomorphism1(d2),isomorphism1(d3))
| ~ product(g2,isomorphism2(d1),isomorphism2(d2),isomorphism2(d3)) ) ).
%--------------------------------------------------------------------------