TPTP Problem File: GRP013-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP013-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Commutator equals identity in these conditions
% Version : [MOW76] axioms.
% English : If X.X=identity and if X^-1.Y^-1 = Z then X.Z = Y, then
% (X.Y).(X^-1.Y^-1) = identity.
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 11 [Wos65]
% : wos11 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 13 ( 9 unt; 0 nHn; 7 RR)
% Number of literals : 22 ( 1 equ; 10 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 26 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%--------------------------------------------------------------------------
cnf(squareness,hypothesis,
product(A,A,identity) ).
cnf(a_times_b_is_c,hypothesis,
product(a,b,c) ).
cnf(inverse_a_times_inverse_b_is_d,hypothesis,
product(inverse(a),inverse(b),d) ).
cnf(inverses_have_property,hypothesis,
( ~ product(inverse(A),inverse(B),C)
| product(A,C,B) ) ).
cnf(prove_c_times_d_is_identity,negated_conjecture,
~ product(c,d,identity) ).
%--------------------------------------------------------------------------