TPTP Problem File: GRP012-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP012-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Inverse of products = Product of inverses
% Version : [MOW76] axioms.
% Theorem formulation : Expressed as (X.Y).(Y^-1.X^-1) = id.
% English : The inverse of products equals the product of the inverse,
% in opposite order.
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 9 [Wos65]
% : wos9 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.17 v3.7.0, 0.00 v2.0.0
% Syntax : Number of clauses : 11 ( 8 unt; 0 nHn; 6 RR)
% Number of literals : 19 ( 1 equ; 9 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 22 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%--------------------------------------------------------------------------
cnf(a_multiply_b_is_c,hypothesis,
product(a,b,c) ).
cnf(inverse_b_multiply_inverse_a_is_d,hypothesis,
product(inverse(b),inverse(a),d) ).
cnf(prove_c_multiply_d_is_identity,negated_conjecture,
~ product(c,d,identity) ).
%--------------------------------------------------------------------------