TPTP Problem File: GRP011-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP011-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Left cancellation
% Version : [Wos65] (equality) axioms : Incomplete.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 63 [Pel86]
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.17 v7.4.0, 0.22 v7.3.0, 0.21 v7.1.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.13 v5.0.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : [Pel86] says "... problems, published I think, by Larry Wos
% (but I cannot locate where)."
%--------------------------------------------------------------------------
%----The operation '*' is associative
cnf(associativity,axiom,
multiply(multiply(X,Y),Z) = multiply(X,multiply(Y,Z)) ).
%----There exists an identity element
cnf(left_identity,axiom,
multiply(identity,X) = X ).
cnf(left_inverse,axiom,
multiply(inverse(X),X) = identity ).
cnf(product_equality,hypothesis,
multiply(b,c) = multiply(d,c) ).
cnf(prove_left_cancellation,negated_conjecture,
b != d ).
%--------------------------------------------------------------------------