TPTP Problem File: GRP010-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP010-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Inverse is a symmetric relationship
% Version : [Wos65] (equality) axioms : Incomplete.
% English : If a is an inverse of b then b is an inverse of a.
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 64 [Pel86]
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.05 v7.5.0, 0.04 v7.4.0, 0.13 v7.3.0, 0.11 v7.1.0, 0.06 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.14 v5.5.0, 0.11 v5.4.0, 0.00 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : [Pel86] says "... problems, published I think, by Larry Wos
% (but I cannot locate where)."
%--------------------------------------------------------------------------
%----The operation '*' is associative
cnf(associativity,axiom,
multiply(multiply(X,Y),Z) = multiply(X,multiply(Y,Z)) ).
%----There exists an identity element 'e' defined below.
cnf(left_identity,axiom,
multiply(identity,X) = X ).
cnf(left_inverse,axiom,
multiply(inverse(X),X) = identity ).
cnf(c_times_b_is_e,hypothesis,
multiply(c,b) = identity ).
cnf(prove_b_times_c_is_e,negated_conjecture,
multiply(b,c) != identity ).
%--------------------------------------------------------------------------