TPTP Problem File: GRP005-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP005-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Identity is in this subset of a group
% Version : [Cha70] axioms : Incomplete.
% English : If S is a non-empty subset of a group such that
% if X, Y belong to S, the XY^-1 belongs to S, then the
% identity e belongs to S.
% Refs : [Luc68] Luckham (1968), Some Tree-paring Strategies for Theore
% : [Cha70] Chang (1970), The Unit Proof and the Input Proof in Th
% : [CL73] Chang & Lee (1973), Symbolic Logic and Mechanical Theo
% Source : [Cha70]
% Names : Example 5 [Luc68]
% : Example 5 [Cha70]
% : Example 5 [CL73]
% : EX5 [SPRFN]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 9 ( 6 unt; 0 nHn; 5 RR)
% Number of literals : 18 ( 0 equ; 10 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-1 aty)
% Number of variables : 19 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(left_identity,axiom,
product(identity,X,X) ).
cnf(right_identity,axiom,
product(X,identity,X) ).
cnf(right_inverse,axiom,
product(X,inverse(X),identity) ).
cnf(left_inverse,axiom,
product(inverse(X),X,identity) ).
cnf(element_of_set,axiom,
an_element(a) ).
cnf(condition,axiom,
( ~ an_element(X)
| ~ an_element(Y)
| ~ product(X,inverse(Y),Z)
| an_element(Z) ) ).
cnf(associativity1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(prove_identity_is_an_element,negated_conjecture,
~ an_element(identity) ).
%--------------------------------------------------------------------------