TPTP Problem File: GRP003-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP003-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : The left identity is also a right identity
% Version : [Cha70] axioms : Incomplete.
% English :
% Refs : [Luc68] Luckham (1968), Some Tree-paring Strategies for Theore
% : [Cha70] Chang (1970), The Unit Proof and the Input Proof in Th
% : [CL73] Chang & Lee (1973), Symbolic Logic and Mechanical Theo
% Source : [Cha70]
% Names : Example 2 [Luc68]
% : Example 3 [Cha70]
% : Example 3 [CL73]
% : EX3 [SPRFN]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 5 ( 3 unt; 0 nHn; 3 RR)
% Number of literals : 11 ( 0 equ; 7 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 3-3 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-1 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(left_inverse,axiom,
product(inverse(X),X,identity) ).
cnf(left_identity,axiom,
product(identity,X,X) ).
cnf(associativity1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(prove_there_is_a_right_identity,negated_conjecture,
~ product(a,identity,a) ).
%--------------------------------------------------------------------------