TPTP Problem File: GRP002-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP002-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Commutator equals identity in groups of order 3
% Version : [Ove90] (equality) axioms.
% English : In a group, if (for all x) the cube of x is the identity
% (i.e. a group of order 3), then the equation [[x,y],y]=
% identity holds, where [x,y] is the product of x, y, the
% inverse of x and the inverse of y (i.e. the commutator
% of x and y).
% Refs : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [Ove90]
% Names : CADE-11 Competition Eq-1 [Ove90]
% : THEOREM EQ-1 [LM93]
% : PROBLEM 1 [Zha93]
% : comm.in [OTTER]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.12 v8.1.0, 0.15 v7.5.0, 0.12 v7.4.0, 0.22 v7.3.0, 0.11 v7.1.0, 0.00 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.12 v6.0.0, 0.29 v5.5.0, 0.32 v5.4.0, 0.13 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Uses an explicit formulation of the commutator.
% : Same axioms as [MOW76] (equality) axioms.
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
%----Definition of the commutator
cnf(commutator,axiom,
commutator(X,Y) = multiply(X,multiply(Y,multiply(inverse(X),inverse(Y)))) ).
cnf(x_cubed_is_identity,hypothesis,
multiply(X,multiply(X,X)) = identity ).
cnf(prove_commutator,negated_conjecture,
commutator(commutator(a,b),b) != identity ).
%--------------------------------------------------------------------------