TPTP Problem File: GRP002-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Commutator equals identity in groups of order 3
% Version : [MOW76] axioms.
% English : In a group, if (for all x) the cube of x is the identity
% (i.e. a group of order 3), then the equation [[x,y],y]=
% identity holds, where [x,y] is the product of x, y, the
% inverse of x and the inverse of y (i.e. the commutator
% of x and y).
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [OMW76] Overbeek et al. (1976), Complexity and Related Enhance
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% Source : [MOW76]
% Names : G6 [MOW76]
% : Theorem 1 [OMW76]
% : Test Problem 2 [Wos88]
% : Commutator Theorem [Wos88]
% : CADE-11 Competition 2 [Ove90]
% : THEOREM 2 [LM93]
% : commutator.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.12 v8.2.0, 0.08 v8.1.0, 0.22 v7.5.0, 0.10 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.29 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.44 v5.5.0, 0.62 v5.4.0, 0.67 v5.2.0, 0.50 v5.1.0, 0.29 v4.1.0, 0.22 v4.0.1, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.4.0, 0.17 v3.3.0, 0.29 v3.2.0, 0.14 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.29 v2.5.0, 0.20 v2.4.0, 0.33 v2.3.0, 0.17 v2.2.1, 0.67 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 16 ( 11 unt; 0 nHn; 11 RR)
% Number of literals : 26 ( 1 equ; 11 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 10 ( 10 usr; 8 con; 0-2 aty)
% Number of variables : 26 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%--------------------------------------------------------------------------
cnf(x_cubed_is_identity_1,hypothesis,
( ~ product(X,X,Y)
| product(X,Y,identity) ) ).
cnf(x_cubed_is_identity_2,hypothesis,
( ~ product(X,X,Y)
| product(Y,X,identity) ) ).
cnf(a_times_b_is_c,negated_conjecture,
product(a,b,c) ).
cnf(c_times_inverse_a_is_d,negated_conjecture,
product(c,inverse(a),d) ).
cnf(d_times_inverse_b_is_h,negated_conjecture,
product(d,inverse(b),h) ).
cnf(h_times_b_is_j,negated_conjecture,
product(h,b,j) ).
cnf(j_times_inverse_h_is_k,negated_conjecture,
product(j,inverse(h),k) ).
cnf(prove_k_times_inverse_b_is_e,negated_conjecture,
~ product(k,inverse(b),identity) ).
%--------------------------------------------------------------------------