TPTP Problem File: GRP001-4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP001-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : X^2 = identity => commutativity
% Version : [Wos65] (equality) axioms : Incomplete.
% English : If the square of every element is the identity, the system
% is commutative.
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 65 [Pel86]
% : x2_quant.in [OTTER]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.14 v5.5.0, 0.11 v5.4.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : [Pel86] says "... problems, published I think, by Larry Wos
% (but I cannot locate where)."
%------------------------------------------------------------------------------
%----The operation '*' is associative
cnf(associativity,axiom,
multiply(multiply(X,Y),Z) = multiply(X,multiply(Y,Z)) ).
%----There exists an identity element 'e' defined below.
cnf(left_identity,axiom,
multiply(identity,X) = X ).
cnf(squareness,hypothesis,
multiply(X,X) = identity ).
cnf(a_times_b_is_c,hypothesis,
multiply(a,b) = c ).
cnf(prove_b_times_a_is_c,negated_conjecture,
multiply(b,a) != c ).
%------------------------------------------------------------------------------