TPTP Problem File: GRP001-3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP001-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : X^2 = identity => commutativity
% Version : [BL+86] axioms.
% English : If the square of every element is the identity, the system
% is commutative.
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Problem 228-231 [BL+86]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 169 ( 14 unt; 27 nHn; 139 RR)
% Number of literals : 426 ( 60 equ; 234 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 19 ( 18 usr; 0 prp; 1-5 aty)
% Number of functors : 71 ( 71 usr; 9 con; 0-5 aty)
% Number of variables : 395 ( 32 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments :
%------------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%----Include the axioms for algebra from Godel's set axioms
include('Axioms/ALG001-0.ax').
%------------------------------------------------------------------------------
cnf(a_group,hypothesis,
group(f71,f72) ).
cnf(f73_is_the_identity,hypothesis,
identity(f71,f72,f73) ).
cnf(x_squared_is_identity,hypothesis,
( ~ member(X,f71)
| apply_to_two_arguments(f72,X,X) = f73 ) ).
cnf(prove_the_group_is_commutative,negated_conjecture,
~ commutes(f71,f72) ).
%------------------------------------------------------------------------------