TPTP Problem File: GRP001-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP001-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : X^2 = identity => commutativity
% Version : [MOW76] axioms.
% English : If the square of every element is the identity, the system
% is commutative.
% Refs : [Rob63] Robinson (1963), Theorem Proving on the Computer
% : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% Source : [MOW76]
% Names : - [Rob63]
% : wos10 [WM76]
% : G1 [MOW76]
% : CADE-11 Competition 1 [Ove90]
% : THEOREM 1 [LM93]
% : xsquared.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 11 ( 8 unt; 0 nHn; 5 RR)
% Number of literals : 19 ( 1 equ; 9 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 23 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%------------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP003-0.ax').
%------------------------------------------------------------------------------
cnf(square_element,hypothesis,
product(X,X,identity) ).
cnf(a_times_b_is_c,negated_conjecture,
product(a,b,c) ).
cnf(prove_b_times_a_is_c,negated_conjecture,
~ product(b,a,c) ).
%------------------------------------------------------------------------------