TPTP Problem File: GRP001+6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP001+6 : TPTP v9.0.0. Released v3.1.0.
% Domain : Group Theory
% Problem : X^2 = identity => commutativity
% Version : Especial.
% English : If the square of every element is the identity, the system
% is commutative.
% Refs : [Shu04] Shults (2004), Email to G. Sutcliffe
% Source : [Shu04]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v7.5.0, 0.14 v7.4.0, 0.06 v7.3.0, 0.00 v7.0.0, 0.14 v6.4.0, 0.07 v6.3.0, 0.08 v6.2.0, 0.18 v6.1.0, 0.24 v6.0.0, 0.50 v5.5.0, 0.21 v5.4.0, 0.17 v5.3.0, 0.26 v5.2.0, 0.00 v5.0.0, 0.10 v4.1.0, 0.17 v4.0.1, 0.26 v4.0.0, 0.25 v3.7.0, 0.14 v3.5.0, 0.00 v3.2.0, 0.33 v3.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 16 ( 0 equ)
% Maximal formula atoms : 16 ( 16 avg)
% Number of connectives : 15 ( 0 ~; 0 |; 10 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 3-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 24 ( 23 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(commutativity,conjecture,
! [E] :
( ( ! [X,Y] :
? [Z] : product(X,Y,Z)
& ! [X,Y,Z,U,V,W] :
( ( product(X,Y,U)
& product(Y,Z,V)
& product(U,Z,W) )
=> product(X,V,W) )
& ! [X,Y,Z,U,V,W] :
( ( product(X,Y,U)
& product(Y,Z,V)
& product(X,V,W) )
=> product(U,Z,W) )
& ! [X] : product(X,E,X)
& ! [X] : product(E,X,X)
& ! [X] : product(X,inverse(X),E)
& ! [X] : product(inverse(X),X,E) )
=> ( ! [X] : product(X,X,E)
=> ! [U,V,W] :
( product(U,V,W)
=> product(V,U,W) ) ) ) ).
%------------------------------------------------------------------------------