TPTP Problem File: GRA101^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRA101^1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Graph Theory
% Problem : TBA
% Version : Especial.
% English :
% Refs : [HH74] Harary & Hell (1974), Generalized Ramsey Theory for Gr
% : [Kal24] Kalizyk (2024), Email to G. Sutcliffe
% Source : [Kal24]
% Names : HararyHell_TH0_059.p [Kal24]
% Status : Unsatisfiable
% Rating : 0.67 v9.0.0
% Syntax : Number of formulae : 10 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 24 ( 6 equ; 0 cnn)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 60 ( 13 ~; 12 |; 1 &; 33 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 18 ( 2 ^ 14 !; 2 ?; 18 :)
% SPC : TH0_UNS_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(inj_tp,type,
inj: ( $i > $i ) > $o ).
thf(inj_def,definition,
( inj
= ( ^ [F: $i > $i] :
! [X: $i,Y: $i] :
( ( ( F @ X )
= ( F @ Y ) )
=> ( X = Y ) ) ) ) ).
thf(surj_tp,type,
surj: ( $i > $i ) > $o ).
thf(surj_def,definition,
( surj
= ( ^ [F: $i > $i] :
! [Z: $i] :
? [X: $i] :
( ( F @ X )
= Z ) ) ) ).
thf(inf,axiom,
? [F: $i > $i] :
( ( inj @ F )
& ~ ( surj @ F ) ) ).
thf(b_tp,type,
b: $i > $i > $o ).
thf(r_tp,type,
r: $i > $i > $o ).
thf(rb_cov,axiom,
! [X: $i,Y: $i] :
( ( X = Y )
| ( r @ X @ Y )
| ( b @ X @ Y ) ) ).
thf(axr,axiom,
! [X0: $i,X1: $i,X2: $i,X3: $i] :
( ~ ( r @ X0 @ X1 )
| ~ ( r @ X0 @ X2 )
| ~ ( r @ X1 @ X2 )
| ~ ( r @ X0 @ X3 )
| ~ ( r @ X2 @ X3 ) ) ).
thf(axb,axiom,
! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
( ~ ( b @ X0 @ X1 )
| ~ ( b @ X1 @ X2 )
| ~ ( b @ X0 @ X3 )
| ~ ( b @ X1 @ X3 )
| ~ ( b @ X0 @ X4 )
| ~ ( b @ X2 @ X4 )
| ~ ( b @ X3 @ X4 ) ) ).
%------------------------------------------------------------------------------