TPTP Problem File: GRA076_1.002.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRA076_1.002 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : Adjacent vertices in a polygon with 2 black or white vertices
% Version : Especial.
% English : If a polygon with n black or white vertices, then two adjacent
% vertices have the same color. If n is odd this is provable in
% CPC.
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : k_poly_p.0002 [Nal22]
% Status : Theorem
% Rating : 0.00 v9.0.0
% Syntax : Number of formulae : 15 ( 0 unt; 14 typ; 0 def)
% Number of atoms : 38 ( 0 equ)
% Maximal formula atoms : 38 ( 38 avg)
% Number of connectives : 105 ( 10 ~; 16 |; 14 &)
% ( 7 <=>; 0 =>; 0 <=; 0 <~>)
% ( 58 {.}; 0 {#})
% Maximal formula depth : 22 ( 22 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 14 ( 14 usr; 14 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_THM_PRP_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff('k_poly_p.0002',logic,
$modal ==
[ $modalities == $modal_system_K ] ).
tff(false_decl,type,
false: $o ).
tff(p1_decl,type,
p1: $o ).
tff(p10_decl,type,
p10: $o ).
tff(p12_decl,type,
p12: $o ).
tff(p14_decl,type,
p14: $o ).
tff(p16_decl,type,
p16: $o ).
tff(p2_decl,type,
p2: $o ).
tff(p3_decl,type,
p3: $o ).
tff(p4_decl,type,
p4: $o ).
tff(p5_decl,type,
p5: $o ).
tff(p6_decl,type,
p6: $o ).
tff(p7_decl,type,
p7: $o ).
tff(p8_decl,type,
p8: $o ).
tff(p9_decl,type,
p9: $o ).
tff(prove,conjecture,
~ ~ ( [.] [.] [.] [.] [.] [.] [.] [.] ( p1
& p2
& p3
& p4
& p5
& p6
& p7
& p8 )
| <.> ( <.> ( <.> ( <.> ( <.> ( <.> ( <.> ( false
| <.> ( p1
<=> p2 ) )
| [.] p3
| <.> <.> ( p2
<=> p3 ) )
| [.] p4
| <.> <.> <.> ( p3
<=> p4 ) )
| [.] p5
| <.> <.> <.> <.> ( p4
<=> p5 ) )
| [.] p6
| <.> <.> <.> <.> <.> ( p5
<=> p6 ) )
| [.] p7
| <.> <.> <.> <.> <.> <.> ( p6
<=> p7 ) )
| [.] p8
| <.> <.> <.> <.> <.> <.> <.> ( p7
<=> p1 ) )
| [.] p9
| [.] [.] [.] [.] [.] [.] [.] [.] ( ~ p2
& ~ p4
& ~ p6
& ~ p8
& ~ p10
& ~ p12
& ~ p14
& ~ p16 ) ) ).
%------------------------------------------------------------------------------