TPTP Problem File: GRA018+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRA018+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Graph Theory
% Problem : 2-colored completed graph size 17 without subgraph of size 4
% Version : Especial.
% English : Find a 2-colored completed graph of size 17 without a complete
% subgraph of size 4 which all the edges have the same color.
% Refs : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source : [Bez05]
% Names : r4_17 [Bez05]
% Status : CounterSatisfiable
% Rating : 0.00 v6.3.0, 0.25 v6.2.0, 0.29 v6.1.0, 0.50 v6.0.0, 0.33 v5.5.0, 0.50 v5.4.0, 0.40 v5.3.0, 0.75 v5.0.0, 0.67 v3.7.0, 0.33 v3.5.0, 0.50 v3.4.0, 0.67 v3.3.0, 0.89 v3.2.0
% Syntax : Number of formulae : 7 ( 1 unt; 0 def)
% Number of atoms : 40 ( 0 equ)
% Maximal formula atoms : 16 ( 5 avg)
% Number of connectives : 33 ( 0 ~; 1 |; 27 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 17 ( 17 usr; 17 con; 0-0 aty)
% Number of variables : 15 ( 15 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(ordering,axiom,
( less_than(n1,n2)
& less_than(n2,n3)
& less_than(n3,n4)
& less_than(n4,n5)
& less_than(n5,n6)
& less_than(n6,n7)
& less_than(n7,n8)
& less_than(n8,n9)
& less_than(n9,n10)
& less_than(n10,n11)
& less_than(n11,n12)
& less_than(n12,n13)
& less_than(n13,n14)
& less_than(n14,n15)
& less_than(n15,n16)
& less_than(n16,n17) ) ).
fof(red_clique,axiom,
! [A,B,C,D] :
( ( red(A,B)
& red(A,C)
& red(B,C)
& red(A,D)
& red(B,D)
& red(C,D) )
=> goal ) ).
fof(green_clique,axiom,
! [A,B,C,D] :
( ( green(A,B)
& green(A,C)
& green(B,C)
& green(A,D)
& green(B,D)
& green(C,D) )
=> goal ) ).
fof(no_overlap,axiom,
! [A,B] :
( ( red(A,B)
& green(A,B) )
=> goal ) ).
fof(less_than_transitive,axiom,
! [A,B,C] :
( ( less_than(A,B)
& less_than(B,C) )
=> less_than(A,C) ) ).
fof(partition,axiom,
! [A,B] :
( less_than(A,B)
=> ( red(A,B)
| green(A,B) ) ) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------