TPTP Problem File: GEO564+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO564+1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Geometry
% Problem : JGEX problem 26
% Version : [CGZ00] axioms.
% English :
% Refs : [CGZ00] Chou et al. (2000), A Deductive Database Approach to A
% : [YCG08] Ye et al. (2008), An Introduction to Java Geometry Exp
% : [Qua20] Quaresma (2020), Email to Geoff Sutcliffe
% Source : [Qua20]
% Names : 26.p [Qua20]
% Status : Theorem
% Rating : 0.64 v9.0.0, 0.69 v8.2.0, 0.67 v7.5.0
% Syntax : Number of formulae : 95 ( 0 unt; 0 def)
% Number of atoms : 322 ( 1 equ)
% Maximal formula atoms : 39 ( 3 avg)
% Number of connectives : 234 ( 7 ~; 5 |; 127 &)
% ( 0 <=>; 95 =>; 0 <=; 0 <~>)
% Maximal formula depth : 48 ( 9 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 2-8 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 542 ( 522 !; 20 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Taken from JGEX [YCG08], converted by Pedro Quaresma.
%------------------------------------------------------------------------------
include('Axioms/GEO012+0.ax').
%------------------------------------------------------------------------------
fof(exemplo6GDDFULL214026,conjecture,
! [A,B,C,H,O,OC,OA,OB,MIDPNT1,MIDPNT2,MIDPNT3,MIDPNT4,MIDPNT5,MIDPNT6,MIDPNT7,MIDPNT8,MIDPNT9,MIDPNT01,MIDPNT11,MIDPNT21] :
( ( perp(A,B,C,H)
& perp(A,C,B,H)
& perp(B,C,A,H)
& midp(MIDPNT1,A,B)
& perp(A,B,MIDPNT1,O)
& midp(MIDPNT2,A,C)
& perp(A,C,MIDPNT2,O)
& midp(MIDPNT3,B,C)
& perp(B,C,MIDPNT3,O)
& midp(MIDPNT4,A,H)
& perp(A,H,MIDPNT4,OC)
& midp(MIDPNT5,A,B)
& perp(A,B,MIDPNT5,OC)
& midp(MIDPNT6,H,B)
& perp(H,B,MIDPNT6,OC)
& midp(MIDPNT7,B,H)
& perp(B,H,MIDPNT7,OA)
& midp(MIDPNT8,B,C)
& perp(B,C,MIDPNT8,OA)
& midp(MIDPNT9,H,C)
& perp(H,C,MIDPNT9,OA)
& midp(MIDPNT01,C,H)
& perp(C,H,MIDPNT01,OB)
& midp(MIDPNT11,C,A)
& perp(C,A,MIDPNT11,OB)
& midp(MIDPNT21,H,A)
& perp(H,A,MIDPNT21,OB) )
=> ( eqangle(B,A,A,C,OB,OA,OA,OC)
& ( eqangle(A,B,B,C,OA,OB,OB,OC)
| eqangle(B,A,A,C,OB,OA,OA,OC) )
& ( eqangle(A,B,B,C,OA,OC,OC,OB)
| eqangle(B,A,A,C,OA,OB,OB,OC) )
& ( eqangle(A,B,B,C,OB,OA,OA,OC)
| eqangle(B,A,A,C,OA,OB,OB,OC) )
& ( eqangle(A,B,B,C,OA,OC,OC,OB)
| eqangle(B,A,A,C,OA,OC,OC,OB) )
& ( eqangle(A,B,B,C,OB,OA,OA,OC)
| eqangle(B,A,A,C,OA,OC,OC,OB) )
& eqangle(A,B,B,C,OA,OB,OB,OC) ) ) ).
%------------------------------------------------------------------------------