TPTP Problem File: GEO437^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO437^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric figures and equations)
% Problem : The University of Tokyo, 2011, Science Course, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Consider the point P(1/2, 1/4) on the coordinate plane. When
% Q(alpha, alpha^2) and R(beta, beta^2) on the parabola y=x^2 move
% so that the points P, Q, and R form an isosceles triangle taking
% QR as the base, find the locus of the centroid G(X, Y) of triangle
% PQR.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-2011-Ri-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 709 unt;1199 typ; 0 def)
% Number of atoms : 8437 (2214 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39645 ( 104 ~; 233 |;1180 &;36002 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4474 ( 371 atm;1205 fun; 960 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8063 ( 407 ^;7085 !; 435 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-02-18
% : Answer
% ^ [V_T_dot_0: '2d.Shape'] :
% ( V_T_dot_0
% = ( '2d.shape-of-cpfun/1'
% @ ^ [V_G_dot_0: '2d.Point'] :
% ( ( ( '2d.x-coord/1' @ V_G_dot_0 )
% != ( $quotient @ 1.0 @ 6.0 ) )
% & ( ( '2d.y-coord/1' @ V_G_dot_0 )
% = ( $difference @ ( $quotient @ 1.0 @ ( $product @ 9.0 @ ( $difference @ ( '2d.x-coord/1' @ V_G_dot_0 ) @ ( $quotient @ 1.0 @ 6.0 ) ) ) ) @ ( $quotient @ 1.0 @ 12.0 ) ) )
% & ( $less @ ( $quotient @ 1.0 @ 4.0 ) @ ( '2d.y-coord/1' @ V_G_dot_0 ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ '2d.Shape'
@ ^ [V_T: '2d.Shape'] :
( V_T
= ( '2d.shape-of-cpfun/1'
@ ^ [V_G: '2d.Point'] :
? [V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point',V_C: '2d.Shape',V_a: $real,V_b: $real] :
( ( V_P
= ( '2d.point/2' @ ( $quotient @ 1.0 @ 2.0 ) @ ( $quotient @ 1.0 @ 4.0 ) ) )
& ( V_C
= ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( V_Q
= ( '2d.point/2' @ V_a @ ( '^/2' @ V_a @ 2.0 ) ) )
& ( V_R
= ( '2d.point/2' @ V_b @ ( '^/2' @ V_b @ 2.0 ) ) )
& ( '2d.on/2' @ V_Q @ V_C )
& ( '2d.on/2' @ V_R @ V_C )
& ( '2d.is-triangle/3' @ V_P @ V_Q @ V_R )
& ( ( '2d.distance/2' @ V_P @ V_Q )
= ( '2d.distance/2' @ V_P @ V_R ) )
& ( '2d.is-center-of-gravity-of/2' @ V_G @ ( '2d.triangle/3' @ V_P @ V_Q @ V_R ) ) ) ) ) ) ).
%------------------------------------------------------------------------------