TPTP Problem File: GEO435^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO435^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric figures and equations)
% Problem : The University of Tokyo, 1989, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Assume that k > 0. When the curves y = k(x - x^3) and x = k(y -
% y^3) on the x y plane have the intersection (alpha, beta), where
% alpha != beta, in the first quadrant, find the range of k.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-1989-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 725 unt;1199 typ; 0 def)
% Number of atoms : 6765 (2213 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39636 ( 105 ~; 233 |;1179 &;35993 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4476 ( 374 atm;1207 fun; 956 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1213 (1170 usr; 67 con; 0-9 aty)
% Number of variables : 8062 ( 408 ^;7085 !; 433 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-03-13
% : Answer
% ^ [V_k_dot_0: $real] :
% ( $less @ 2.0 @ V_k_dot_0 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_k: $real] :
? [V_C1: '2d.Shape',V_C2: '2d.Shape'] :
( ( $less @ 0.0 @ V_k )
& ( V_C1
= ( '2d.shape-of-cpfun/1'
@ ^ [V_p_dot_0: '2d.Point'] :
( ( '2d.y-coord/1' @ V_p_dot_0 )
= ( $product @ V_k @ ( $difference @ ( '2d.x-coord/1' @ V_p_dot_0 ) @ ( '^/2' @ ( '2d.x-coord/1' @ V_p_dot_0 ) @ 3.0 ) ) ) ) ) )
& ( V_C2
= ( '2d.shape-of-cpfun/1'
@ ^ [V_p: '2d.Point'] :
( ( '2d.x-coord/1' @ V_p )
= ( $product @ V_k @ ( $difference @ ( '2d.y-coord/1' @ V_p ) @ ( '^/2' @ ( '2d.y-coord/1' @ V_p ) @ 3.0 ) ) ) ) ) )
& ? [V_a: $real,V_b: $real] :
( ( V_a != V_b )
& ( $less @ 0.0 @ V_a )
& ( $less @ 0.0 @ V_b )
& ( '2d.on/2' @ ( '2d.point/2' @ V_a @ V_b ) @ V_C1 )
& ( '2d.on/2' @ ( '2d.point/2' @ V_a @ V_b ) @ V_C2 ) ) ) ) ).
%------------------------------------------------------------------------------