TPTP Problem File: GEO434^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO434^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric quantities)
% Problem : Tohoku University, 2007, Humanities Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Answer the following questions about triangle ABC whose vertices
% are the points A(0, 0), B(2, 0), and C(1, sqrt(3)) on the x y
% plane. (1) For the constant a satisfying 0 =< a =< sqrt(3), find
% the range of x such that the point P(x, a) is contained in
% triangle ABC. (2) For the constant a described in (1), when x
% moves in the range found in (1), find the minimum value of AP^2
% + BP^2 + CP^2 and the value of x that gives the minimum value.
% (3) When the point P(x, y) is contained in triangle ABC, find
% the minimum value of AP^2 + BP^2 + CP^2 and the coordinates of
% the point P that give the minimum value.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-2007-Bun-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 727 unt;1200 typ; 0 def)
% Number of atoms : 7069 (2216 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39630 ( 104 ~; 233 |;1182 &;35985 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4472 ( 373 atm;1203 fun; 959 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8064 ( 406 ^;7085 !; 437 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-04-16
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_x: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_AB: '2d.Shape',V_BC: '2d.Shape',V_CA: '2d.Shape',V_ABC: '2d.Shape',V_P: '2d.Point'] :
( ( $lesseq @ 0.0 @ 'a/0' )
& ( $lesseq @ 'a/0' @ ( 'sqrt/1' @ 3.0 ) )
& ( V_A
= ( '2d.point/2' @ 0.0 @ 0.0 ) )
& ( V_B
= ( '2d.point/2' @ 2.0 @ 0.0 ) )
& ( V_C
= ( '2d.point/2' @ 1.0 @ ( 'sqrt/1' @ 3.0 ) ) )
& ( V_AB
= ( '2d.line/2' @ V_A @ V_B ) )
& ( V_BC
= ( '2d.line/2' @ V_B @ V_C ) )
& ( V_CA
= ( '2d.line/2' @ V_C @ V_A ) )
& ( V_ABC
= ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( V_P
= ( '2d.point/2' @ V_x @ 'a/0' ) )
& ( '2d.on/2' @ V_P @ ( '2d.with-boundary/1' @ V_ABC ) ) ) ) ).
%------------------------------------------------------------------------------