TPTP Problem File: GEO433^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO433^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric figures and equations)
% Problem : Kyushu University, 2013, Humanities Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let D be the region defined by the following simultaneous
% inequalities: x + 2 yle 5, 3 x + yle 8, - 2 x - yle 4, and - x -
% 4 yle 7 When the point P(x, y) moves in the region D, let Q and
% R be the points that give the maximum and minimum values of x +
% y, respectively. Answer the following questions: (1) Find the
% coordinates of the points Q and R. (2) Assume that a > 0 and b
% > 0. Assume that when the point P(x, y) moves in the region D,
% P(x, y) becomes the maximum only at the point Q and becomes the
% minimum only at the point R. Find the value of a/b.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-2013-Bun-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 709 unt;1199 typ; 0 def)
% Number of atoms : 7994 (2210 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39673 ( 104 ~; 233 |;1180 &;36029 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4489 ( 377 atm;1217 fun; 959 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8061 ( 407 ^;7086 !; 432 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-05-14
% : Answer
% ^ [V_QR_dot_0: ( ''ListOf'' @ '2d.Point' )] :
% ( V_QR_dot_0
% = ( 'cons/2' @ '2d.Point' @ ( '2d.point/2' @ ( $quotient @ 11.0 @ 5.0 ) @ ( $quotient @ 7.0 @ 5.0 ) ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.point/2' @ ( $quotient @ -9.0 @ 7.0 ) @ ( $quotient @ -10.0 @ 7.0 ) ) @ ( 'nil/0' @ '2d.Point' ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ '2d.Point' )
@ ^ [V_QR: 'ListOf' @ '2d.Point'] :
? [V_D: '2d.Shape',V_Q: '2d.Point',V_R: '2d.Point'] :
( ( V_D
= ( '2d.shape-of-cpfun/1'
@ ^ [V_p: '2d.Point'] :
( ( $lesseq @ ( $sum @ ( '2d.x-coord/1' @ V_p ) @ ( $product @ 2.0 @ ( '2d.y-coord/1' @ V_p ) ) ) @ 5.0 )
& ( $lesseq @ ( $sum @ ( $product @ 3.0 @ ( '2d.x-coord/1' @ V_p ) ) @ ( '2d.y-coord/1' @ V_p ) ) @ 8.0 )
& ( $lesseq @ ( $uminus @ ( $sum @ ( $product @ 2.0 @ ( '2d.x-coord/1' @ V_p ) ) @ ( '2d.y-coord/1' @ V_p ) ) ) @ 4.0 )
& ( $lesseq @ ( $uminus @ ( $sum @ ( '2d.x-coord/1' @ V_p ) @ ( $product @ 4.0 @ ( '2d.y-coord/1' @ V_p ) ) ) ) @ 7.0 ) ) ) )
& ( '2d.on/2' @ V_Q @ V_D )
& ( '2d.on/2' @ V_R @ V_D )
& ! [V_X: '2d.Point'] :
( ( '2d.on/2' @ V_X @ V_D )
=> ( ( $lesseq @ ( $sum @ ( '2d.x-coord/1' @ V_X ) @ ( '2d.y-coord/1' @ V_X ) ) @ ( $sum @ ( '2d.x-coord/1' @ V_Q ) @ ( '2d.y-coord/1' @ V_Q ) ) )
& ( $lesseq @ ( $sum @ ( '2d.x-coord/1' @ V_R ) @ ( '2d.y-coord/1' @ V_R ) ) @ ( $sum @ ( '2d.x-coord/1' @ V_X ) @ ( '2d.y-coord/1' @ V_X ) ) ) ) )
& ( V_QR
= ( 'cons/2' @ '2d.Point' @ V_Q @ ( 'cons/2' @ '2d.Point' @ V_R @ ( 'nil/0' @ '2d.Point' ) ) ) ) ) ) ).
%------------------------------------------------------------------------------