TPTP Problem File: GEO432^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO432^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric quantities)
% Problem : Kyushu University, 2009, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Consider the isosceles triangle ABC with angle A as the right
% angle. Let M be the middle point of the side BC, and P, the
% point that internally divides the side BC in a ratio of 1 : 3.
% Let Q and R be the intersections of the sides AB and AC and the
% straight line passing through the point P and parallel to the
% side BC, respectively. Answer the following questions: (1) Find
% cosangle QMR. (2) Judge which is larger, twice angle QMR or
% angle QMB.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-2009-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6749 (2210 equ; 0 cnn)
% Maximal formula atoms : 22 ( 2 avg)
% Number of connectives : 39643 ( 104 ~; 233 |;1183 &;35997 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4464 ( 371 atm;1203 fun; 953 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8064 ( 406 ^;7085 !; 437 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-05-21
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_cosQMR: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_M: '2d.Point',V_l: '2d.Shape',V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point'] :
( ( '2d.is-isosceles-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-right/1' @ ( '2d.angle/3' @ V_B @ V_A @ V_C ) )
& ( V_M
= ( '2d.midpoint-of/2' @ V_B @ V_C ) )
& ( '2d.divide-internally/4' @ V_P @ ( '2d.seg/2' @ V_A @ V_M ) @ 1.0 @ 3.0 )
& ( '2d.line-type/1' @ V_l )
& ( '2d.parallel/2' @ V_l @ ( '2d.seg/2' @ V_B @ V_C ) )
& ( '2d.on/2' @ V_P @ V_l )
& ( '2d.on/2' @ V_Q @ V_l )
& ( '2d.on/2' @ V_Q @ ( '2d.seg/2' @ V_A @ V_B ) )
& ( '2d.on/2' @ V_R @ V_l )
& ( '2d.on/2' @ V_R @ ( '2d.seg/2' @ V_A @ V_C ) )
& ( V_cosQMR
= ( '2d.cos-of-angle/1' @ ( '2d.angle/3' @ V_Q @ V_M @ V_R ) ) ) ) ) ).
%------------------------------------------------------------------------------